Skip to content

Kubeflow

zenml.integrations.kubeflow special

Initialization of the Kubeflow integration for ZenML.

The Kubeflow integration sub-module powers an alternative to the local orchestrator. You can enable it by registering the Kubeflow orchestrator with the CLI tool.

KubeflowIntegration (Integration)

Definition of Kubeflow Integration for ZenML.

Source code in zenml/integrations/kubeflow/__init__.py
class KubeflowIntegration(Integration):
    """Definition of Kubeflow Integration for ZenML."""

    NAME = KUBEFLOW
    REQUIREMENTS = ["kfp==1.8.13"]

    @classmethod
    def flavors(cls) -> List[Type[Flavor]]:
        """Declare the stack component flavors for the Kubeflow integration.

        Returns:
            List of stack component flavors for this integration.
        """
        from zenml.integrations.kubeflow.flavors import (
            KubeflowOrchestratorFlavor,
        )

        return [KubeflowOrchestratorFlavor]

flavors() classmethod

Declare the stack component flavors for the Kubeflow integration.

Returns:

Type Description
List[Type[zenml.stack.flavor.Flavor]]

List of stack component flavors for this integration.

Source code in zenml/integrations/kubeflow/__init__.py
@classmethod
def flavors(cls) -> List[Type[Flavor]]:
    """Declare the stack component flavors for the Kubeflow integration.

    Returns:
        List of stack component flavors for this integration.
    """
    from zenml.integrations.kubeflow.flavors import (
        KubeflowOrchestratorFlavor,
    )

    return [KubeflowOrchestratorFlavor]

flavors special

Kubeflow integration flavors.

kubeflow_orchestrator_flavor

Kubeflow orchestrator flavor.

KubeflowOrchestratorConfig (BaseOrchestratorConfig, KubeflowOrchestratorSettings) pydantic-model

Configuration for the Kubeflow orchestrator.

Attributes:

Name Type Description
kubeflow_pipelines_ui_port int

A local port to which the KFP UI will be forwarded.

kubeflow_hostname Optional[str]

The hostname to use to talk to the Kubeflow Pipelines API. If not set, the hostname will be derived from the Kubernetes API proxy.

kubeflow_namespace str

The Kubernetes namespace in which Kubeflow Pipelines is deployed. Defaults to kubeflow.

kubernetes_context Optional[str]

Optional name of a kubernetes context to run pipelines in. If not set, will try to spin up a local K3d cluster.

skip_local_validations bool

If True, the local validations will be skipped.

skip_cluster_provisioning bool

If True, the k3d cluster provisioning will be skipped.

skip_ui_daemon_provisioning bool

If True, provisioning the KFP UI daemon will be skipped.

Source code in zenml/integrations/kubeflow/flavors/kubeflow_orchestrator_flavor.py
class KubeflowOrchestratorConfig(  # type: ignore[misc] # https://github.com/pydantic/pydantic/issues/4173
    BaseOrchestratorConfig, KubeflowOrchestratorSettings
):
    """Configuration for the Kubeflow orchestrator.

    Attributes:
        kubeflow_pipelines_ui_port: A local port to which the KFP UI will be
            forwarded.
        kubeflow_hostname: The hostname to use to talk to the Kubeflow Pipelines
            API. If not set, the hostname will be derived from the Kubernetes
            API proxy.
        kubeflow_namespace: The Kubernetes namespace in which Kubeflow
            Pipelines is deployed. Defaults to `kubeflow`.
        kubernetes_context: Optional name of a kubernetes context to run
            pipelines in. If not set, will try to spin up a local K3d cluster.
        skip_local_validations: If `True`, the local validations will be
            skipped.
        skip_cluster_provisioning: If `True`, the k3d cluster provisioning will
            be skipped.
        skip_ui_daemon_provisioning: If `True`, provisioning the KFP UI daemon
            will be skipped.
    """

    kubeflow_pipelines_ui_port: int = DEFAULT_KFP_UI_PORT
    kubeflow_hostname: Optional[str] = None
    kubeflow_namespace: str = "kubeflow"
    kubernetes_context: Optional[str] = None  # TODO: Potential setting
    skip_local_validations: bool = False
    skip_cluster_provisioning: bool = False
    skip_ui_daemon_provisioning: bool = False

    @property
    def is_remote(self) -> bool:
        """Checks if this stack component is running remotely.

        This designation is used to determine if the stack component can be
        used with a local ZenML database or if it requires a remote ZenML
        server.

        Returns:
            True if this config is for a remote component, False otherwise.
        """
        if (
            self.kubernetes_context is not None
            and not self.kubernetes_context.startswith("k3d-zenml-kubeflow-")
        ):
            return True
        return False

    @property
    def is_local(self) -> bool:
        """Checks if this stack component is running locally.

        This designation is used to determine if the stack component can be
        shared with other users or if it is only usable on the local host.

        Returns:
            True if this config is for a local component, False otherwise.
        """
        if (
            self.kubernetes_context is None
            or self.kubernetes_context.startswith("k3d-zenml-kubeflow-")
        ):
            return True
        return False
is_local: bool property readonly

Checks if this stack component is running locally.

This designation is used to determine if the stack component can be shared with other users or if it is only usable on the local host.

Returns:

Type Description
bool

True if this config is for a local component, False otherwise.

is_remote: bool property readonly

Checks if this stack component is running remotely.

This designation is used to determine if the stack component can be used with a local ZenML database or if it requires a remote ZenML server.

Returns:

Type Description
bool

True if this config is for a remote component, False otherwise.

KubeflowOrchestratorFlavor (BaseOrchestratorFlavor)

Kubeflow orchestrator flavor.

Source code in zenml/integrations/kubeflow/flavors/kubeflow_orchestrator_flavor.py
class KubeflowOrchestratorFlavor(BaseOrchestratorFlavor):
    """Kubeflow orchestrator flavor."""

    @property
    def name(self) -> str:
        """Name of the flavor.

        Returns:
            The name of the flavor.
        """
        return KUBEFLOW_ORCHESTRATOR_FLAVOR

    @property
    def config_class(self) -> Type[KubeflowOrchestratorConfig]:
        """Returns `KubeflowOrchestratorConfig` config class.

        Returns:
                The config class.
        """
        return KubeflowOrchestratorConfig

    @property
    def implementation_class(self) -> Type["KubeflowOrchestrator"]:
        """Implementation class for this flavor.

        Returns:
            The implementation class.
        """
        from zenml.integrations.kubeflow.orchestrators import (
            KubeflowOrchestrator,
        )

        return KubeflowOrchestrator
config_class: Type[zenml.integrations.kubeflow.flavors.kubeflow_orchestrator_flavor.KubeflowOrchestratorConfig] property readonly

Returns KubeflowOrchestratorConfig config class.

Returns:

Type Description
Type[zenml.integrations.kubeflow.flavors.kubeflow_orchestrator_flavor.KubeflowOrchestratorConfig]

The config class.

implementation_class: Type[KubeflowOrchestrator] property readonly

Implementation class for this flavor.

Returns:

Type Description
Type[KubeflowOrchestrator]

The implementation class.

name: str property readonly

Name of the flavor.

Returns:

Type Description
str

The name of the flavor.

KubeflowOrchestratorSettings (BaseSettings) pydantic-model

Settings for the Kubeflow orchestrator.

Attributes:

Name Type Description
synchronous bool

If True, running a pipeline using this orchestrator will block until all steps finished running on KFP. This setting only has an effect when specified on the pipeline and will be ignored if specified on steps.

timeout int

How many seconds to wait for synchronous runs.

client_args Dict[str, Any]

Arguments to pass when initializing the KFP client.

user_namespace Optional[str]

The user namespace to use when creating experiments and runs.

node_selectors Dict[str, str]

Deprecated: Node selectors to apply to KFP pods.

node_affinity Dict[str, List[str]]

Deprecated: Node affinities to apply to KFP pods.

pod_settings Optional[zenml.integrations.kubernetes.pod_settings.KubernetesPodSettings]

Pod settings to apply.

Source code in zenml/integrations/kubeflow/flavors/kubeflow_orchestrator_flavor.py
class KubeflowOrchestratorSettings(BaseSettings):
    """Settings for the Kubeflow orchestrator.

    Attributes:
        synchronous: If `True`, running a pipeline using this orchestrator will
            block until all steps finished running on KFP. This setting only
            has an effect when specified on the pipeline and will be ignored if
            specified on steps.
        timeout: How many seconds to wait for synchronous runs.
        client_args: Arguments to pass when initializing the KFP client.
        user_namespace: The user namespace to use when creating experiments
            and runs.
        node_selectors: Deprecated: Node selectors to apply to KFP pods.
        node_affinity: Deprecated: Node affinities to apply to KFP pods.
        pod_settings: Pod settings to apply.
    """

    synchronous: bool = False
    timeout: int = 1200

    client_args: Dict[str, Any] = {}
    user_namespace: Optional[str] = None
    node_selectors: Dict[str, str] = {}
    node_affinity: Dict[str, List[str]] = {}
    pod_settings: Optional[KubernetesPodSettings] = None

    @root_validator
    def _migrate_pod_settings(cls, values: Dict[str, Any]) -> Dict[str, Any]:
        has_pod_settings = bool(values.get("pod_settings"))

        node_selectors = cast(
            Dict[str, str], values.get("node_selectors") or {}
        )
        node_affinity = cast(
            Dict[str, List[str]], values.get("node_affinity") or {}
        )

        has_old_settings = any([node_selectors, node_affinity])

        if has_old_settings:
            logger.warning(
                "The attributes `node_selectors` and `node_affinity` of the "
                "Kubeflow settings will be deprecated soon. Use the "
                "attribute `pod_settings` instead.",
            )

        if has_pod_settings and has_old_settings:
            raise AssertionError(
                "Got Kubeflow pod settings using both the deprecated "
                "attributes `node_selectors` and `node_affinity` as well as "
                "the new attribute `pod_settings`. Please specify Kubeflow "
                "pod settings only using the new `pod_settings` attribute."
            )
        elif has_old_settings:
            from kubernetes import client as k8s_client

            affinity = {}
            if node_affinity:
                match_expressions = [
                    k8s_client.V1NodeSelectorRequirement(
                        key=key,
                        operator="In",
                        values=values,
                    )
                    for key, values in node_affinity.items()
                ]

                affinity = k8s_client.V1Affinity(
                    node_affinity=k8s_client.V1NodeAffinity(
                        required_during_scheduling_ignored_during_execution=k8s_client.V1NodeSelector(
                            node_selector_terms=[
                                k8s_client.V1NodeSelectorTerm(
                                    match_expressions=match_expressions
                                )
                            ]
                        )
                    )
                )
            pod_settings = KubernetesPodSettings(
                node_selectors=node_selectors, affinity=affinity
            )
            values["pod_settings"] = pod_settings
            values["node_affinity"] = {}
            values["node_selectors"] = {}

        return values

orchestrators special

Initialization of the Kubeflow ZenML orchestrator.

kubeflow_entrypoint_configuration

Implementation of the Kubeflow entrypoint configuration.

KubeflowEntrypointConfiguration (StepEntrypointConfiguration)

Entrypoint configuration for running steps on kubeflow.

This class writes a markdown file that will be displayed in the KFP UI.

Source code in zenml/integrations/kubeflow/orchestrators/kubeflow_entrypoint_configuration.py
class KubeflowEntrypointConfiguration(StepEntrypointConfiguration):
    """Entrypoint configuration for running steps on kubeflow.

    This class writes a markdown file that will be displayed in the KFP UI.
    """

    @classmethod
    def get_entrypoint_options(cls) -> Set[str]:
        """Gets all options required for running with this configuration.

        The metadata ui path option expects a path where the markdown file
        that will be displayed in the kubeflow UI should be written. The same
        path needs to be added as an output artifact called
        `mlpipeline-ui-metadata` for the corresponding `kfp.dsl.ContainerOp`.

        Returns:
            The superclass options as well as an option for the metadata ui
            path.
        """
        return super().get_entrypoint_options() | {METADATA_UI_PATH_OPTION}

    @classmethod
    def get_entrypoint_arguments(cls, **kwargs: Any) -> List[str]:
        """Gets all arguments that the entrypoint command should be called with.

        Args:
            **kwargs: Kwargs, must include the metadata ui path.

        Returns:
            The superclass arguments as well as arguments for the metadata ui
            path.
        """
        return super().get_entrypoint_arguments(**kwargs) + [
            f"--{METADATA_UI_PATH_OPTION}",
            kwargs[METADATA_UI_PATH_OPTION],
        ]

    def post_run(
        self,
        pipeline_name: str,
        step_name: str,
        execution_info: Optional[data_types.ExecutionInfo] = None,
    ) -> None:
        """Writes a markdown file that will display information.

        This will be about the step execution and input/output artifacts in the
        KFP UI.

        Args:
            pipeline_name: The name of the pipeline.
            step_name: The name of the step.
            execution_info: The execution info of the step.
        """
        if execution_info:
            utils.dump_ui_metadata(
                execution_info=execution_info,
                metadata_ui_path=self.entrypoint_args[METADATA_UI_PATH_OPTION],
            )
get_entrypoint_arguments(**kwargs) classmethod

Gets all arguments that the entrypoint command should be called with.

Parameters:

Name Type Description Default
**kwargs Any

Kwargs, must include the metadata ui path.

{}

Returns:

Type Description
List[str]

The superclass arguments as well as arguments for the metadata ui path.

Source code in zenml/integrations/kubeflow/orchestrators/kubeflow_entrypoint_configuration.py
@classmethod
def get_entrypoint_arguments(cls, **kwargs: Any) -> List[str]:
    """Gets all arguments that the entrypoint command should be called with.

    Args:
        **kwargs: Kwargs, must include the metadata ui path.

    Returns:
        The superclass arguments as well as arguments for the metadata ui
        path.
    """
    return super().get_entrypoint_arguments(**kwargs) + [
        f"--{METADATA_UI_PATH_OPTION}",
        kwargs[METADATA_UI_PATH_OPTION],
    ]
get_entrypoint_options() classmethod

Gets all options required for running with this configuration.

The metadata ui path option expects a path where the markdown file that will be displayed in the kubeflow UI should be written. The same path needs to be added as an output artifact called mlpipeline-ui-metadata for the corresponding kfp.dsl.ContainerOp.

Returns:

Type Description
Set[str]

The superclass options as well as an option for the metadata ui path.

Source code in zenml/integrations/kubeflow/orchestrators/kubeflow_entrypoint_configuration.py
@classmethod
def get_entrypoint_options(cls) -> Set[str]:
    """Gets all options required for running with this configuration.

    The metadata ui path option expects a path where the markdown file
    that will be displayed in the kubeflow UI should be written. The same
    path needs to be added as an output artifact called
    `mlpipeline-ui-metadata` for the corresponding `kfp.dsl.ContainerOp`.

    Returns:
        The superclass options as well as an option for the metadata ui
        path.
    """
    return super().get_entrypoint_options() | {METADATA_UI_PATH_OPTION}
post_run(self, pipeline_name, step_name, execution_info=None)

Writes a markdown file that will display information.

This will be about the step execution and input/output artifacts in the KFP UI.

Parameters:

Name Type Description Default
pipeline_name str

The name of the pipeline.

required
step_name str

The name of the step.

required
execution_info Optional[tfx.orchestration.portable.data_types.ExecutionInfo]

The execution info of the step.

None
Source code in zenml/integrations/kubeflow/orchestrators/kubeflow_entrypoint_configuration.py
def post_run(
    self,
    pipeline_name: str,
    step_name: str,
    execution_info: Optional[data_types.ExecutionInfo] = None,
) -> None:
    """Writes a markdown file that will display information.

    This will be about the step execution and input/output artifacts in the
    KFP UI.

    Args:
        pipeline_name: The name of the pipeline.
        step_name: The name of the step.
        execution_info: The execution info of the step.
    """
    if execution_info:
        utils.dump_ui_metadata(
            execution_info=execution_info,
            metadata_ui_path=self.entrypoint_args[METADATA_UI_PATH_OPTION],
        )

kubeflow_orchestrator

Implementation of the Kubeflow orchestrator.

KubeflowOrchestrator (BaseOrchestrator)

Orchestrator responsible for running pipelines using Kubeflow.

Source code in zenml/integrations/kubeflow/orchestrators/kubeflow_orchestrator.py
class KubeflowOrchestrator(BaseOrchestrator):
    """Orchestrator responsible for running pipelines using Kubeflow."""

    @property
    def config(self) -> KubeflowOrchestratorConfig:
        """Returns the `KubeflowOrchestratorConfig` config.

        Returns:
            The configuration.
        """
        return cast(KubeflowOrchestratorConfig, self._config)

    @staticmethod
    def _get_k3d_cluster_name(uuid: UUID) -> str:
        """Returns the k3d cluster name corresponding to the orchestrator UUID.

        Args:
            uuid: The UUID of the orchestrator.

        Returns:
            The k3d cluster name.
        """
        # k3d only allows cluster names with up to 32 characters; use the
        # first 8 chars of the orchestrator UUID as identifier
        return f"zenml-kubeflow-{str(uuid)[:8]}"

    @staticmethod
    def _get_k3d_kubernetes_context(uuid: UUID) -> str:
        """Gets the k3d kubernetes context.

        Args:
            uuid: The UUID of the orchestrator.

        Returns:
            The name of the kubernetes context associated with the k3d
                cluster managed locally by ZenML corresponding to the orchestrator UUID.
        """
        return f"k3d-{KubeflowOrchestrator._get_k3d_cluster_name(uuid)}"

    @property
    def kubernetes_context(self) -> str:
        """Gets the kubernetes context associated with the orchestrator.

        This sets the default `kubernetes_context` value to the value that is
        used to create the locally managed k3d cluster, if not explicitly set.

        Returns:
            The kubernetes context associated with the orchestrator.
        """
        if self.config.kubernetes_context:
            return self.config.kubernetes_context
        return self._get_k3d_kubernetes_context(self.id)

    def get_kubernetes_contexts(self) -> Tuple[List[str], Optional[str]]:
        """Get the list of configured Kubernetes contexts and the active context.

        Returns:
            A tuple containing the list of configured Kubernetes contexts and
            the active context.
        """
        try:
            contexts, active_context = k8s_config.list_kube_config_contexts()
        except k8s_config.config_exception.ConfigException:
            return [], None

        context_names = [c["name"] for c in contexts]
        active_context_name = active_context["name"]
        return context_names, active_context_name

    @property
    def settings_class(self) -> Optional[Type["BaseSettings"]]:
        """Settings class for the Kubeflow orchestrator.

        Returns:
            The settings class.
        """
        return KubeflowOrchestratorSettings

    @property
    def validator(self) -> Optional[StackValidator]:
        """Validates that the stack contains a container registry.

        Also check that requirements are met for local components.

        Returns:
            A `StackValidator` instance.
        """

        def _validate_local_requirements(stack: "Stack") -> Tuple[bool, str]:

            container_registry = stack.container_registry

            # should not happen, because the stack validation takes care of
            # this, but just in case
            assert container_registry is not None

            contexts, active_context = self.get_kubernetes_contexts()

            if self.kubernetes_context not in contexts:
                if not self.is_local:
                    return False, (
                        f"Could not find a Kubernetes context named "
                        f"'{self.kubernetes_context}' in the local Kubernetes "
                        f"configuration. Please make sure that the Kubernetes "
                        f"cluster is running and that the kubeconfig file is "
                        f"configured correctly. To list all configured "
                        f"contexts, run:\n\n"
                        f"  `kubectl config get-contexts`\n"
                    )
            elif active_context and self.kubernetes_context != active_context:
                logger.warning(
                    f"The Kubernetes context '{self.kubernetes_context}' "
                    f"configured for the Kubeflow orchestrator is not the "
                    f"same as the active context in the local Kubernetes "
                    f"configuration. If this is not deliberate, you should "
                    f"update the orchestrator's `kubernetes_context` field by "
                    f"running:\n\n"
                    f"  `zenml orchestrator update {self.name} "
                    f"--kubernetes_context={active_context}`\n"
                    f"To list all configured contexts, run:\n\n"
                    f"  `kubectl config get-contexts`\n"
                    f"To set the active context to be the same as the one "
                    f"configured in the Kubeflow orchestrator and silence "
                    f"this warning, run:\n\n"
                    f"  `kubectl config use-context "
                    f"{self.kubernetes_context}`\n"
                )

            silence_local_validations_msg = (
                f"To silence this warning, set the "
                f"`skip_local_validations` attribute to True in the "
                f"orchestrator configuration by running:\n\n"
                f"  'zenml orchestrator update {self.name} "
                f"--skip_local_validations=True'\n"
            )

            if not self.config.skip_local_validations and not self.is_local:

                # if the orchestrator is not running in a local k3d cluster,
                # we cannot have any other local components in our stack,
                # because we cannot mount the local path into the container.
                # This may result in problems when running the pipeline, because
                # the local components will not be available inside the
                # Kubeflow containers.

                # go through all stack components and identify those that
                # advertise a local path where they persist information that
                # they need to be available when running pipelines.
                for stack_comp in stack.components.values():
                    local_path = stack_comp.local_path
                    if not local_path:
                        continue
                    return False, (
                        f"The Kubeflow orchestrator is configured to run "
                        f"pipelines in a remote Kubernetes cluster designated "
                        f"by the '{self.kubernetes_context}' configuration "
                        f"context, but the '{stack_comp.name}' "
                        f"{stack_comp.type.value} is a local stack component "
                        f"and will not be available in the Kubeflow pipeline "
                        f"step.\nPlease ensure that you always use non-local "
                        f"stack components with a remote Kubeflow orchestrator, "
                        f"otherwise you may run into pipeline execution "
                        f"problems. You should use a flavor of "
                        f"{stack_comp.type.value} other than "
                        f"'{stack_comp.flavor}'.\n"
                        + silence_local_validations_msg
                    )

                # if the orchestrator is remote, the container registry must
                # also be remote.
                if container_registry.config.is_local:
                    return False, (
                        f"The Kubeflow orchestrator is configured to run "
                        f"pipelines in a remote Kubernetes cluster designated "
                        f"by the '{self.kubernetes_context}' configuration "
                        f"context, but the '{container_registry.name}' "
                        f"container registry URI "
                        f"'{container_registry.config.uri}' "
                        f"points to a local container registry. Please ensure "
                        f"that you always use non-local stack components with "
                        f"a remote Kubeflow orchestrator, otherwise you will "
                        f"run into problems. You should use a flavor of "
                        f"container registry other than "
                        f"'{container_registry.flavor}'.\n"
                        + silence_local_validations_msg
                    )

            if not self.config.skip_local_validations and self.is_local:

                # if the orchestrator is local, the container registry must
                # also be local.
                if not container_registry.config.is_local:
                    return False, (
                        f"The Kubeflow orchestrator is configured to run "
                        f"pipelines in a local k3d Kubernetes cluster "
                        f"designated by the '{self.kubernetes_context}' "
                        f"configuration context, but the container registry "
                        f"URI '{container_registry.config.uri}' doesn't "
                        f"match the expected format 'localhost:$PORT'. "
                        f"The local Kubeflow orchestrator only works with a "
                        f"local container registry because it cannot "
                        f"currently authenticate to external container "
                        f"registries. You should use a flavor of container "
                        f"registry other than '{container_registry.flavor}'.\n"
                        + silence_local_validations_msg
                    )

            return True, ""

        return StackValidator(
            required_components={StackComponentType.CONTAINER_REGISTRY},
            custom_validation_function=_validate_local_requirements,
        )

    @property
    def is_local(self) -> bool:
        """Checks if the KFP orchestrator is running locally.

        Returns:
            `True` if the KFP orchestrator is running locally (i.e. in
            the local k3d cluster managed by ZenML).
        """
        return self.kubernetes_context == self._get_k3d_kubernetes_context(
            self.id
        )

    @property
    def root_directory(self) -> str:
        """Path to the root directory for all files concerning this orchestrator.

        Returns:
            Path to the root directory.
        """
        return os.path.join(
            io_utils.get_global_config_directory(),
            "kubeflow",
            str(self.id),
        )

    @property
    def pipeline_directory(self) -> str:
        """Returns path to a directory in which the kubeflow pipeline files are stored.

        Returns:
            Path to the pipeline directory.
        """
        return os.path.join(self.root_directory, "pipelines")

    def prepare_pipeline_deployment(
        self,
        deployment: "PipelineDeployment",
        stack: "Stack",
    ) -> None:
        """Build a Docker image and push it to the container registry.

        Args:
            deployment: The pipeline deployment configuration.
            stack: The stack on which the pipeline will be deployed.
        """
        docker_image_builder = PipelineDockerImageBuilder()
        repo_digest = docker_image_builder.build_and_push_docker_image(
            deployment=deployment, stack=stack
        )
        deployment.add_extra(ORCHESTRATOR_DOCKER_IMAGE_KEY, repo_digest)

    def _configure_container_op(
        self,
        container_op: dsl.ContainerOp,
        settings: KubeflowOrchestratorSettings,
    ) -> None:
        """Makes changes in place to the configuration of the container op.

        Configures persistent mounted volumes for each stack component that
        writes to a local path. Adds some labels to the container_op and applies
        some functions to ir.

        Args:
            container_op: The kubeflow container operation to configure.
            settings: Orchestrator settings for this step.
        """
        # Path to a metadata file that will be displayed in the KFP UI
        # This metadata file needs to be in a mounted emptyDir to avoid
        # sporadic failures with the (not mature) PNS executor
        # See these links for more information about limitations of PNS +
        # security context:
        # https://www.kubeflow.org/docs/components/pipelines/installation/localcluster-deployment/#deploying-kubeflow-pipelines
        # https://argoproj.github.io/argo-workflows/empty-dir/
        # KFP will switch to the Emissary executor (soon), when this emptyDir
        # mount will not be necessary anymore, but for now it's still in alpha
        # status (https://www.kubeflow.org/docs/components/pipelines/installation/choose-executor/#emissary-executor)
        volumes: Dict[str, k8s_client.V1Volume] = {
            "/outputs": k8s_client.V1Volume(
                name="outputs", empty_dir=k8s_client.V1EmptyDirVolumeSource()
            ),
        }

        stack = Client().active_stack

        if self.is_local:
            stack.check_local_paths()

            local_stores_path = GlobalConfiguration().local_stores_path

            host_path = k8s_client.V1HostPathVolumeSource(
                path=local_stores_path, type="Directory"
            )

            volumes[local_stores_path] = k8s_client.V1Volume(
                name="local-stores",
                host_path=host_path,
            )
            logger.debug(
                "Adding host path volume for the local ZenML stores (path: %s) "
                "in kubeflow pipelines container.",
                local_stores_path,
            )

            if sys.platform == "win32":
                # File permissions are not checked on Windows. This if clause
                # prevents mypy from complaining about unused 'type: ignore'
                # statements
                pass
            else:
                # Run KFP containers in the context of the local UID/GID
                # to ensure that the artifact and metadata stores can be shared
                # with the local pipeline runs.
                container_op.container.security_context = (
                    k8s_client.V1SecurityContext(
                        run_as_user=os.getuid(),
                        run_as_group=os.getgid(),
                    )
                )
                logger.debug(
                    "Setting security context UID and GID to local user/group "
                    "in kubeflow pipelines container."
                )

            container_op.container.add_env_variable(
                k8s_client.V1EnvVar(
                    name=ENV_ZENML_LOCAL_STORES_PATH,
                    value=local_stores_path,
                )
            )

        container_op.add_pvolumes(volumes)

        # Add some pod labels to the container_op
        for k, v in KFP_POD_LABELS.items():
            container_op.add_pod_label(k, v)

        if settings.pod_settings:
            apply_pod_settings(
                container_op=container_op, settings=settings.pod_settings
            )

        # Mounts configmap containing Metadata gRPC server configuration.
        container_op.apply(utils.mount_config_map_op("metadata-grpc-configmap"))

        # Disable caching in KFP v1 only works like this, replace by the second
        # line in the future
        container_op.execution_options.caching_strategy.max_cache_staleness = (
            "P0D"
        )
        # container_op.set_caching_options(enable_caching=False)

    @staticmethod
    def _configure_container_resources(
        container_op: dsl.ContainerOp,
        resource_settings: "ResourceSettings",
    ) -> None:
        """Adds resource requirements to the container.

        Args:
            container_op: The kubeflow container operation to configure.
            resource_settings: The resource settings to use for this
                container.
        """
        if resource_settings.cpu_count is not None:
            container_op = container_op.set_cpu_limit(
                str(resource_settings.cpu_count)
            )

        if resource_settings.gpu_count is not None:
            container_op = container_op.set_gpu_limit(
                resource_settings.gpu_count
            )

        if resource_settings.memory is not None:
            memory_limit = resource_settings.memory[:-1]
            container_op = container_op.set_memory_limit(memory_limit)

    def prepare_or_run_pipeline(
        self,
        deployment: "PipelineDeployment",
        stack: "Stack",
    ) -> Any:
        """Creates a kfp yaml file.

        This functions as an intermediary representation of the pipeline which
        is then deployed to the kubeflow pipelines instance.

        How it works:
        -------------
        Before this method is called the `prepare_pipeline_deployment()`
        method builds a docker image that contains the code for the
        pipeline, all steps the context around these files.

        Based on this docker image a callable is created which builds
        container_ops for each step (`_construct_kfp_pipeline`).
        To do this the entrypoint of the docker image is configured to
        run the correct step within the docker image. The dependencies
        between these container_ops are then also configured onto each
        container_op by pointing at the downstream steps.

        This callable is then compiled into a kfp yaml file that is used as
        the intermediary representation of the kubeflow pipeline.

        This file, together with some metadata, runtime configurations is
        then uploaded into the kubeflow pipelines cluster for execution.

        Args:
            deployment: The pipeline deployment to prepare or run.
            stack: The stack the pipeline will run on.

        Raises:
            RuntimeError: If trying to run a pipeline in a notebook environment.
        """
        # First check whether the code running in a notebook
        if Environment.in_notebook():
            raise RuntimeError(
                "The Kubeflow orchestrator cannot run pipelines in a notebook "
                "environment. The reason is that it is non-trivial to create "
                "a Docker image of a notebook. Please consider refactoring "
                "your notebook cells into separate scripts in a Python module "
                "and run the code outside of a notebook when using this "
                "orchestrator."
            )

        assert stack.container_registry
        image_name = deployment.pipeline.extra[ORCHESTRATOR_DOCKER_IMAGE_KEY]
        if self.is_local and stack.container_registry.config.is_local:
            image_name = f"k3d-zenml-kubeflow-registry.{image_name}"

        # Create a callable for future compilation into a dsl.Pipeline.
        def _construct_kfp_pipeline() -> None:
            """Create a container_op for each step.

            This should contain the name of the docker image and configures the
            entrypoint of the docker image to run the step.

            Additionally, this gives each container_op information about its
            direct downstream steps.

            If this callable is passed to the `_create_and_write_workflow()`
            method of a KFPCompiler all dsl.ContainerOp instances will be
            automatically added to a singular dsl.Pipeline instance.
            """
            # Dictionary of container_ops index by the associated step name
            step_name_to_container_op: Dict[str, dsl.ContainerOp] = {}

            for step_name, step in deployment.steps.items():
                # The command will be needed to eventually call the python step
                # within the docker container
                command = (
                    KubeflowEntrypointConfiguration.get_entrypoint_command()
                )

                # The arguments are passed to configure the entrypoint of the
                # docker container when the step is called.
                metadata_ui_path = "/outputs/mlpipeline-ui-metadata.json"
                arguments = (
                    KubeflowEntrypointConfiguration.get_entrypoint_arguments(
                        step_name=step_name,
                        **{METADATA_UI_PATH_OPTION: metadata_ui_path},
                    )
                )

                # Create a container_op - the kubeflow equivalent of a step. It
                # contains the name of the step, the name of the docker image,
                # the command to use to run the step entrypoint
                # (e.g. `python -m zenml.entrypoints.step_entrypoint`)
                # and the arguments to be passed along with the command. Find
                # out more about how these arguments are parsed and used
                # in the base entrypoint `run()` method.
                container_op = dsl.ContainerOp(
                    name=step.config.name,
                    image=image_name,
                    command=command,
                    arguments=arguments,
                    output_artifact_paths={
                        "mlpipeline-ui-metadata": metadata_ui_path,
                    },
                )

                settings = cast(
                    KubeflowOrchestratorSettings, self.get_settings(step)
                )
                self._configure_container_op(
                    container_op=container_op,
                    settings=settings,
                )

                if self.requires_resources_in_orchestration_environment(step):
                    self._configure_container_resources(
                        container_op=container_op,
                        resource_settings=step.config.resource_settings,
                    )

                # Find the upstream container ops of the current step and
                # configure the current container op to run after them
                for upstream_step_name in step.spec.upstream_steps:
                    upstream_container_op = step_name_to_container_op[
                        upstream_step_name
                    ]
                    container_op.after(upstream_container_op)

                # Update dictionary of container ops with the current one
                step_name_to_container_op[step.config.name] = container_op

        orchestrator_run_name = get_orchestrator_run_name(
            pipeline_name=deployment.pipeline.name
        )

        # Get a filepath to use to save the finished yaml to
        fileio.makedirs(self.pipeline_directory)
        pipeline_file_path = os.path.join(
            self.pipeline_directory, f"{orchestrator_run_name}.yaml"
        )

        # write the argo pipeline yaml
        KFPCompiler()._create_and_write_workflow(
            pipeline_func=_construct_kfp_pipeline,
            pipeline_name=deployment.pipeline.name,
            package_path=pipeline_file_path,
        )
        logger.info(
            "Writing Kubeflow workflow definition to `%s`.", pipeline_file_path
        )

        # using the kfp client uploads the pipeline to kubeflow pipelines and
        # runs it there
        self._upload_and_run_pipeline(
            deployment=deployment,
            pipeline_file_path=pipeline_file_path,
            run_name=orchestrator_run_name,
        )

    def _upload_and_run_pipeline(
        self,
        deployment: "PipelineDeployment",
        pipeline_file_path: str,
        run_name: str,
    ) -> None:
        """Tries to upload and run a KFP pipeline.

        Args:
            deployment: The pipeline deployment.
            pipeline_file_path: Path to the pipeline definition file.
            run_name: The Kubeflow run name.
        """
        pipeline_name = deployment.pipeline.name
        settings = cast(
            KubeflowOrchestratorSettings, self.get_settings(deployment)
        )
        user_namespace = settings.user_namespace

        try:
            logger.info(
                "Running in kubernetes context '%s'.",
                self.kubernetes_context,
            )

            # upload the pipeline to Kubeflow and start it

            client = self._get_kfp_client(settings=settings)
            if deployment.schedule:
                try:
                    experiment = client.get_experiment(
                        pipeline_name, namespace=user_namespace
                    )
                    logger.info(
                        "A recurring run has already been created with this "
                        "pipeline. Creating new recurring run now.."
                    )
                except (ValueError, ApiException):
                    experiment = client.create_experiment(
                        pipeline_name, namespace=user_namespace
                    )
                    logger.info(
                        "Creating a new recurring run for pipeline '%s'.. ",
                        pipeline_name,
                    )
                logger.info(
                    "You can see all recurring runs under the '%s' experiment.",
                    pipeline_name,
                )

                interval_seconds = (
                    deployment.schedule.interval_second.seconds
                    if deployment.schedule.interval_second
                    else None
                )
                result = client.create_recurring_run(
                    experiment_id=experiment.id,
                    job_name=run_name,
                    pipeline_package_path=pipeline_file_path,
                    enable_caching=False,
                    cron_expression=deployment.schedule.cron_expression,
                    start_time=deployment.schedule.utc_start_time,
                    end_time=deployment.schedule.utc_end_time,
                    interval_second=interval_seconds,
                    no_catchup=not deployment.schedule.catchup,
                )

                logger.info("Started recurring run with ID '%s'.", result.id)
            else:
                logger.info(
                    "No schedule detected. Creating a one-off pipeline run.."
                )
                result = client.create_run_from_pipeline_package(
                    pipeline_file_path,
                    arguments={},
                    run_name=run_name,
                    enable_caching=False,
                    namespace=user_namespace,
                )
                logger.info(
                    "Started one-off pipeline run with ID '%s'.", result.run_id
                )

                if settings.synchronous:
                    client.wait_for_run_completion(
                        run_id=result.run_id, timeout=settings.timeout
                    )
        except urllib3.exceptions.HTTPError as error:
            logger.warning(
                f"Failed to upload Kubeflow pipeline: %s. "
                f"Please make sure your kubernetes config is present and the "
                f"{self.kubernetes_context} kubernetes context is configured "
                f"correctly.",
                error,
            )

    def get_orchestrator_run_id(self) -> str:
        """Returns the active orchestrator run id.

        Raises:
            RuntimeError: If the environment variable specifying the run id
                is not set.

        Returns:
            The orchestrator run id.
        """
        try:
            return os.environ[ENV_KFP_RUN_ID]
        except KeyError:
            raise RuntimeError(
                "Unable to read run id from environment variable "
                f"{ENV_KFP_RUN_ID}."
            )

    def _get_kfp_client(
        self,
        settings: KubeflowOrchestratorSettings,
    ) -> kfp.Client:
        """Creates a KFP client instance.

        Args:
            settings: Settings which can be used to
                configure the client instance.

        Returns:
            A KFP client instance.
        """
        client_args = {
            "kube_context": self.config.kubernetes_context,
        }

        client_args.update(settings.client_args)

        # The host and namespace are stack component configurations that refer
        # to the Kubeflow deployment. We don't want these overwritten on a
        # run by run basis by user settings
        client_args["host"] = self.config.kubeflow_hostname
        client_args["namespace"] = self.config.kubeflow_namespace

        return kfp.Client(**client_args)

    @property
    def _pid_file_path(self) -> str:
        """Returns path to the daemon PID file.

        Returns:
            Path to the daemon PID file.
        """
        return os.path.join(self.root_directory, "kubeflow_daemon.pid")

    @property
    def log_file(self) -> str:
        """Path of the daemon log file.

        Returns:
            Path of the daemon log file.
        """
        return os.path.join(self.root_directory, "kubeflow_daemon.log")

    @property
    def _k3d_cluster_name(self) -> str:
        """Returns the K3D cluster name.

        Returns:
            The K3D cluster name.
        """
        return self._get_k3d_cluster_name(self.id)

    def _get_k3d_registry_name(self, port: int) -> str:
        """Returns the K3D registry name.

        Args:
            port: Port of the registry.

        Returns:
            The registry name.
        """
        return f"k3d-zenml-kubeflow-registry.localhost:{port}"

    @property
    def _k3d_registry_config_path(self) -> str:
        """Returns the path to the K3D registry config yaml.

        Returns:
            str: Path to the K3D registry config yaml.
        """
        return os.path.join(self.root_directory, "k3d_registry.yaml")

    def _get_kfp_ui_daemon_port(self) -> int:
        """Port to use for the KFP UI daemon.

        Returns:
            Port to use for the KFP UI daemon.
        """
        port = self.config.kubeflow_pipelines_ui_port
        if port == DEFAULT_KFP_UI_PORT and not networking_utils.port_available(
            port
        ):
            # if the user didn't specify a specific port and the default
            # port is occupied, fallback to a random open port
            port = networking_utils.find_available_port()
        return port

    def list_manual_setup_steps(
        self, container_registry_name: str, container_registry_path: str
    ) -> None:
        """Logs manual steps needed to setup the Kubeflow local orchestrator.

        Args:
            container_registry_name: Name of the container registry.
            container_registry_path: Path to the container registry.
        """
        if not self.is_local:
            # Make sure we're not telling users to deploy Kubeflow on their
            # remote clusters
            logger.warning(
                "This Kubeflow orchestrator is configured to use a non-local "
                f"Kubernetes context {self.kubernetes_context}. Manually "
                f"deploying Kubeflow Pipelines is only possible for local "
                f"Kubeflow orchestrators."
            )
            return

        global_config_dir_path = io_utils.get_global_config_directory()
        kubeflow_commands = [
            f"> k3d cluster create {self._k3d_cluster_name} --image {local_deployment_utils.K3S_IMAGE_NAME} --registry-create {container_registry_name} --registry-config {container_registry_path} --volume {global_config_dir_path}:{global_config_dir_path}\n",
            f"> kubectl --context {self.kubernetes_context} apply -k github.com/kubeflow/pipelines/manifests/kustomize/cluster-scoped-resources?ref={KFP_VERSION}&timeout=5m",
            f"> kubectl --context {self.kubernetes_context} wait --timeout=60s --for condition=established crd/applications.app.k8s.io",
            f"> kubectl --context {self.kubernetes_context} apply -k github.com/kubeflow/pipelines/manifests/kustomize/env/platform-agnostic-pns?ref={KFP_VERSION}&timeout=5m",
            f"> kubectl --context {self.kubernetes_context} --namespace kubeflow port-forward svc/ml-pipeline-ui {self.config.kubeflow_pipelines_ui_port}:80",
        ]

        logger.info(
            "If you wish to spin up this Kubeflow local orchestrator manually, "
            "please enter the following commands:\n"
        )
        logger.info("\n".join(kubeflow_commands))

    @property
    def is_provisioned(self) -> bool:
        """Returns if a local k3d cluster for this orchestrator exists.

        Returns:
            True if a local k3d cluster exists, False otherwise.
        """
        if not local_deployment_utils.check_prerequisites(
            skip_k3d=self.config.skip_cluster_provisioning or not self.is_local,
            skip_kubectl=self.config.skip_cluster_provisioning
            and self.config.skip_ui_daemon_provisioning,
        ):
            # if any prerequisites are missing there is certainly no
            # local deployment running
            return False

        return self.is_cluster_provisioned

    @property
    def is_running(self) -> bool:
        """Checks if the local k3d cluster and UI daemon are both running.

        Returns:
            True if the local k3d cluster and UI daemon for this orchestrator are both running.
        """
        return (
            self.is_provisioned
            and self.is_cluster_running
            and self.is_daemon_running
        )

    @property
    def is_suspended(self) -> bool:
        """Checks if the local k3d cluster and UI daemon are both stopped.

        Returns:
            True if the cluster and daemon for this orchestrator are both stopped, False otherwise.
        """
        return (
            self.is_provisioned
            and (
                self.config.skip_cluster_provisioning
                or not self.is_cluster_running
            )
            and (
                self.config.skip_ui_daemon_provisioning
                or not self.is_daemon_running
            )
        )

    @property
    def is_cluster_provisioned(self) -> bool:
        """Returns if the local k3d cluster for this orchestrator is provisioned.

        For remote (i.e. not managed by ZenML) Kubeflow Pipelines installations,
        this always returns True.

        Returns:
            True if the local k3d cluster is provisioned, False otherwise.
        """
        if self.config.skip_cluster_provisioning or not self.is_local:
            return True
        return local_deployment_utils.k3d_cluster_exists(
            cluster_name=self._k3d_cluster_name
        )

    @property
    def is_cluster_running(self) -> bool:
        """Returns if the local k3d cluster for this orchestrator is running.

        For remote (i.e. not managed by ZenML) Kubeflow Pipelines installations,
        this always returns True.

        Returns:
            True if the local k3d cluster is running, False otherwise.
        """
        if self.config.skip_cluster_provisioning or not self.is_local:
            return True
        return local_deployment_utils.k3d_cluster_running(
            cluster_name=self._k3d_cluster_name
        )

    @property
    def is_daemon_running(self) -> bool:
        """Returns if the local Kubeflow UI daemon for this orchestrator is running.

        Returns:
            True if the daemon is running, False otherwise.
        """
        if self.config.skip_ui_daemon_provisioning:
            return True

        if sys.platform != "win32":
            from zenml.utils.daemon import check_if_daemon_is_running

            return check_if_daemon_is_running(self._pid_file_path)
        else:
            return True

    def provision(self) -> None:
        """Provisions a local Kubeflow Pipelines deployment.

        Raises:
            ProvisioningError: If the provisioning fails.
        """
        if self.config.skip_cluster_provisioning:
            return

        if self.is_running:
            logger.info(
                "Found already existing local Kubeflow Pipelines deployment. "
                "If there are any issues with the existing deployment, please "
                "run 'zenml stack down --force' to delete it."
            )
            return

        if not local_deployment_utils.check_prerequisites():
            raise ProvisioningError(
                "Unable to provision local Kubeflow Pipelines deployment: "
                "Please install 'k3d' and 'kubectl' and try again."
            )

        container_registry = Client().active_stack.container_registry

        # should not happen, because the stack validation takes care of this,
        # but just in case
        assert container_registry is not None

        fileio.makedirs(self.root_directory)

        if not self.is_local:
            # don't provision any resources if using a remote KFP installation
            return

        logger.info("Provisioning local Kubeflow Pipelines deployment...")

        container_registry_port = int(
            container_registry.config.uri.split(":")[-1]
        )
        container_registry_name = self._get_k3d_registry_name(
            port=container_registry_port
        )
        local_deployment_utils.write_local_registry_yaml(
            yaml_path=self._k3d_registry_config_path,
            registry_name=container_registry_name,
            registry_uri=container_registry.config.uri,
        )

        try:
            local_deployment_utils.create_k3d_cluster(
                cluster_name=self._k3d_cluster_name,
                registry_name=container_registry_name,
                registry_config_path=self._k3d_registry_config_path,
            )
            kubernetes_context = self.kubernetes_context

            # will never happen, but mypy doesn't know that
            assert kubernetes_context is not None

            local_deployment_utils.deploy_kubeflow_pipelines(
                kubernetes_context=kubernetes_context
            )

            artifact_store = Client().active_stack.artifact_store
            if isinstance(artifact_store, LocalArtifactStore):
                local_deployment_utils.add_hostpath_to_kubeflow_pipelines(
                    kubernetes_context=kubernetes_context,
                    local_path=artifact_store.path,
                )
        except Exception as e:
            logger.error(e)
            logger.error(
                "Unable to spin up local Kubeflow Pipelines deployment."
            )

            self.list_manual_setup_steps(
                container_registry_name, self._k3d_registry_config_path
            )
            self.deprovision()

    def deprovision(self) -> None:
        """Deprovisions a local Kubeflow Pipelines deployment."""
        if self.config.skip_cluster_provisioning:
            return

        if (
            not self.config.skip_ui_daemon_provisioning
            and self.is_daemon_running
        ):
            local_deployment_utils.stop_kfp_ui_daemon(
                pid_file_path=self._pid_file_path
            )

        if self.is_local:
            # don't deprovision any resources if using a remote KFP installation
            local_deployment_utils.delete_k3d_cluster(
                cluster_name=self._k3d_cluster_name
            )

            logger.info("Local kubeflow pipelines deployment deprovisioned.")

        if fileio.exists(self.log_file):
            fileio.remove(self.log_file)

    def resume(self) -> None:
        """Resumes the local k3d cluster.

        Raises:
            ProvisioningError: If the k3d cluster is not provisioned.
        """
        if self.is_running:
            logger.info("Local kubeflow pipelines deployment already running.")
            return

        if not self.is_provisioned:
            raise ProvisioningError(
                "Unable to resume local kubeflow pipelines deployment: No "
                "resources provisioned for local deployment."
            )

        kubernetes_context = self.kubernetes_context

        # will never happen, but mypy doesn't know that
        assert kubernetes_context is not None

        if (
            not self.config.skip_cluster_provisioning
            and self.is_local
            and not self.is_cluster_running
        ):
            # don't resume any resources if using a remote KFP installation
            local_deployment_utils.start_k3d_cluster(
                cluster_name=self._k3d_cluster_name
            )

            local_deployment_utils.wait_until_kubeflow_pipelines_ready(
                kubernetes_context=kubernetes_context
            )

        if not self.is_daemon_running:
            local_deployment_utils.start_kfp_ui_daemon(
                pid_file_path=self._pid_file_path,
                log_file_path=self.log_file,
                port=self._get_kfp_ui_daemon_port(),
                kubernetes_context=kubernetes_context,
            )

    def suspend(self) -> None:
        """Suspends the local k3d cluster."""
        if not self.is_provisioned:
            logger.info("Local kubeflow pipelines deployment not provisioned.")
            return

        if (
            not self.config.skip_ui_daemon_provisioning
            and self.is_daemon_running
        ):
            local_deployment_utils.stop_kfp_ui_daemon(
                pid_file_path=self._pid_file_path
            )

        if (
            not self.config.skip_cluster_provisioning
            and self.is_local
            and self.is_cluster_running
        ):
            # don't suspend any resources if using a remote KFP installation
            local_deployment_utils.stop_k3d_cluster(
                cluster_name=self._k3d_cluster_name
            )
config: KubeflowOrchestratorConfig property readonly

Returns the KubeflowOrchestratorConfig config.

Returns:

Type Description
KubeflowOrchestratorConfig

The configuration.

is_cluster_provisioned: bool property readonly

Returns if the local k3d cluster for this orchestrator is provisioned.

For remote (i.e. not managed by ZenML) Kubeflow Pipelines installations, this always returns True.

Returns:

Type Description
bool

True if the local k3d cluster is provisioned, False otherwise.

is_cluster_running: bool property readonly

Returns if the local k3d cluster for this orchestrator is running.

For remote (i.e. not managed by ZenML) Kubeflow Pipelines installations, this always returns True.

Returns:

Type Description
bool

True if the local k3d cluster is running, False otherwise.

is_daemon_running: bool property readonly

Returns if the local Kubeflow UI daemon for this orchestrator is running.

Returns:

Type Description
bool

True if the daemon is running, False otherwise.

is_local: bool property readonly

Checks if the KFP orchestrator is running locally.

Returns:

Type Description
bool

True if the KFP orchestrator is running locally (i.e. in the local k3d cluster managed by ZenML).

is_provisioned: bool property readonly

Returns if a local k3d cluster for this orchestrator exists.

Returns:

Type Description
bool

True if a local k3d cluster exists, False otherwise.

is_running: bool property readonly

Checks if the local k3d cluster and UI daemon are both running.

Returns:

Type Description
bool

True if the local k3d cluster and UI daemon for this orchestrator are both running.

is_suspended: bool property readonly

Checks if the local k3d cluster and UI daemon are both stopped.

Returns:

Type Description
bool

True if the cluster and daemon for this orchestrator are both stopped, False otherwise.

kubernetes_context: str property readonly

Gets the kubernetes context associated with the orchestrator.

This sets the default kubernetes_context value to the value that is used to create the locally managed k3d cluster, if not explicitly set.

Returns:

Type Description
str

The kubernetes context associated with the orchestrator.

log_file: str property readonly

Path of the daemon log file.

Returns:

Type Description
str

Path of the daemon log file.

pipeline_directory: str property readonly

Returns path to a directory in which the kubeflow pipeline files are stored.

Returns:

Type Description
str

Path to the pipeline directory.

root_directory: str property readonly

Path to the root directory for all files concerning this orchestrator.

Returns:

Type Description
str

Path to the root directory.

settings_class: Optional[Type[BaseSettings]] property readonly

Settings class for the Kubeflow orchestrator.

Returns:

Type Description
Optional[Type[BaseSettings]]

The settings class.

validator: Optional[zenml.stack.stack_validator.StackValidator] property readonly

Validates that the stack contains a container registry.

Also check that requirements are met for local components.

Returns:

Type Description
Optional[zenml.stack.stack_validator.StackValidator]

A StackValidator instance.

deprovision(self)

Deprovisions a local Kubeflow Pipelines deployment.

Source code in zenml/integrations/kubeflow/orchestrators/kubeflow_orchestrator.py
def deprovision(self) -> None:
    """Deprovisions a local Kubeflow Pipelines deployment."""
    if self.config.skip_cluster_provisioning:
        return

    if (
        not self.config.skip_ui_daemon_provisioning
        and self.is_daemon_running
    ):
        local_deployment_utils.stop_kfp_ui_daemon(
            pid_file_path=self._pid_file_path
        )

    if self.is_local:
        # don't deprovision any resources if using a remote KFP installation
        local_deployment_utils.delete_k3d_cluster(
            cluster_name=self._k3d_cluster_name
        )

        logger.info("Local kubeflow pipelines deployment deprovisioned.")

    if fileio.exists(self.log_file):
        fileio.remove(self.log_file)
get_kubernetes_contexts(self)

Get the list of configured Kubernetes contexts and the active context.

Returns:

Type Description
Tuple[List[str], Optional[str]]

A tuple containing the list of configured Kubernetes contexts and the active context.

Source code in zenml/integrations/kubeflow/orchestrators/kubeflow_orchestrator.py
def get_kubernetes_contexts(self) -> Tuple[List[str], Optional[str]]:
    """Get the list of configured Kubernetes contexts and the active context.

    Returns:
        A tuple containing the list of configured Kubernetes contexts and
        the active context.
    """
    try:
        contexts, active_context = k8s_config.list_kube_config_contexts()
    except k8s_config.config_exception.ConfigException:
        return [], None

    context_names = [c["name"] for c in contexts]
    active_context_name = active_context["name"]
    return context_names, active_context_name
get_orchestrator_run_id(self)

Returns the active orchestrator run id.

Exceptions:

Type Description
RuntimeError

If the environment variable specifying the run id is not set.

Returns:

Type Description
str

The orchestrator run id.

Source code in zenml/integrations/kubeflow/orchestrators/kubeflow_orchestrator.py
def get_orchestrator_run_id(self) -> str:
    """Returns the active orchestrator run id.

    Raises:
        RuntimeError: If the environment variable specifying the run id
            is not set.

    Returns:
        The orchestrator run id.
    """
    try:
        return os.environ[ENV_KFP_RUN_ID]
    except KeyError:
        raise RuntimeError(
            "Unable to read run id from environment variable "
            f"{ENV_KFP_RUN_ID}."
        )
list_manual_setup_steps(self, container_registry_name, container_registry_path)

Logs manual steps needed to setup the Kubeflow local orchestrator.

Parameters:

Name Type Description Default
container_registry_name str

Name of the container registry.

required
container_registry_path str

Path to the container registry.

required
Source code in zenml/integrations/kubeflow/orchestrators/kubeflow_orchestrator.py
def list_manual_setup_steps(
    self, container_registry_name: str, container_registry_path: str
) -> None:
    """Logs manual steps needed to setup the Kubeflow local orchestrator.

    Args:
        container_registry_name: Name of the container registry.
        container_registry_path: Path to the container registry.
    """
    if not self.is_local:
        # Make sure we're not telling users to deploy Kubeflow on their
        # remote clusters
        logger.warning(
            "This Kubeflow orchestrator is configured to use a non-local "
            f"Kubernetes context {self.kubernetes_context}. Manually "
            f"deploying Kubeflow Pipelines is only possible for local "
            f"Kubeflow orchestrators."
        )
        return

    global_config_dir_path = io_utils.get_global_config_directory()
    kubeflow_commands = [
        f"> k3d cluster create {self._k3d_cluster_name} --image {local_deployment_utils.K3S_IMAGE_NAME} --registry-create {container_registry_name} --registry-config {container_registry_path} --volume {global_config_dir_path}:{global_config_dir_path}\n",
        f"> kubectl --context {self.kubernetes_context} apply -k github.com/kubeflow/pipelines/manifests/kustomize/cluster-scoped-resources?ref={KFP_VERSION}&timeout=5m",
        f"> kubectl --context {self.kubernetes_context} wait --timeout=60s --for condition=established crd/applications.app.k8s.io",
        f"> kubectl --context {self.kubernetes_context} apply -k github.com/kubeflow/pipelines/manifests/kustomize/env/platform-agnostic-pns?ref={KFP_VERSION}&timeout=5m",
        f"> kubectl --context {self.kubernetes_context} --namespace kubeflow port-forward svc/ml-pipeline-ui {self.config.kubeflow_pipelines_ui_port}:80",
    ]

    logger.info(
        "If you wish to spin up this Kubeflow local orchestrator manually, "
        "please enter the following commands:\n"
    )
    logger.info("\n".join(kubeflow_commands))
prepare_or_run_pipeline(self, deployment, stack)

Creates a kfp yaml file.

This functions as an intermediary representation of the pipeline which is then deployed to the kubeflow pipelines instance.

How it works:

Before this method is called the prepare_pipeline_deployment() method builds a docker image that contains the code for the pipeline, all steps the context around these files.

Based on this docker image a callable is created which builds container_ops for each step (_construct_kfp_pipeline). To do this the entrypoint of the docker image is configured to run the correct step within the docker image. The dependencies between these container_ops are then also configured onto each container_op by pointing at the downstream steps.

This callable is then compiled into a kfp yaml file that is used as the intermediary representation of the kubeflow pipeline.

This file, together with some metadata, runtime configurations is then uploaded into the kubeflow pipelines cluster for execution.

Parameters:

Name Type Description Default
deployment PipelineDeployment

The pipeline deployment to prepare or run.

required
stack Stack

The stack the pipeline will run on.

required

Exceptions:

Type Description
RuntimeError

If trying to run a pipeline in a notebook environment.

Source code in zenml/integrations/kubeflow/orchestrators/kubeflow_orchestrator.py
def prepare_or_run_pipeline(
    self,
    deployment: "PipelineDeployment",
    stack: "Stack",
) -> Any:
    """Creates a kfp yaml file.

    This functions as an intermediary representation of the pipeline which
    is then deployed to the kubeflow pipelines instance.

    How it works:
    -------------
    Before this method is called the `prepare_pipeline_deployment()`
    method builds a docker image that contains the code for the
    pipeline, all steps the context around these files.

    Based on this docker image a callable is created which builds
    container_ops for each step (`_construct_kfp_pipeline`).
    To do this the entrypoint of the docker image is configured to
    run the correct step within the docker image. The dependencies
    between these container_ops are then also configured onto each
    container_op by pointing at the downstream steps.

    This callable is then compiled into a kfp yaml file that is used as
    the intermediary representation of the kubeflow pipeline.

    This file, together with some metadata, runtime configurations is
    then uploaded into the kubeflow pipelines cluster for execution.

    Args:
        deployment: The pipeline deployment to prepare or run.
        stack: The stack the pipeline will run on.

    Raises:
        RuntimeError: If trying to run a pipeline in a notebook environment.
    """
    # First check whether the code running in a notebook
    if Environment.in_notebook():
        raise RuntimeError(
            "The Kubeflow orchestrator cannot run pipelines in a notebook "
            "environment. The reason is that it is non-trivial to create "
            "a Docker image of a notebook. Please consider refactoring "
            "your notebook cells into separate scripts in a Python module "
            "and run the code outside of a notebook when using this "
            "orchestrator."
        )

    assert stack.container_registry
    image_name = deployment.pipeline.extra[ORCHESTRATOR_DOCKER_IMAGE_KEY]
    if self.is_local and stack.container_registry.config.is_local:
        image_name = f"k3d-zenml-kubeflow-registry.{image_name}"

    # Create a callable for future compilation into a dsl.Pipeline.
    def _construct_kfp_pipeline() -> None:
        """Create a container_op for each step.

        This should contain the name of the docker image and configures the
        entrypoint of the docker image to run the step.

        Additionally, this gives each container_op information about its
        direct downstream steps.

        If this callable is passed to the `_create_and_write_workflow()`
        method of a KFPCompiler all dsl.ContainerOp instances will be
        automatically added to a singular dsl.Pipeline instance.
        """
        # Dictionary of container_ops index by the associated step name
        step_name_to_container_op: Dict[str, dsl.ContainerOp] = {}

        for step_name, step in deployment.steps.items():
            # The command will be needed to eventually call the python step
            # within the docker container
            command = (
                KubeflowEntrypointConfiguration.get_entrypoint_command()
            )

            # The arguments are passed to configure the entrypoint of the
            # docker container when the step is called.
            metadata_ui_path = "/outputs/mlpipeline-ui-metadata.json"
            arguments = (
                KubeflowEntrypointConfiguration.get_entrypoint_arguments(
                    step_name=step_name,
                    **{METADATA_UI_PATH_OPTION: metadata_ui_path},
                )
            )

            # Create a container_op - the kubeflow equivalent of a step. It
            # contains the name of the step, the name of the docker image,
            # the command to use to run the step entrypoint
            # (e.g. `python -m zenml.entrypoints.step_entrypoint`)
            # and the arguments to be passed along with the command. Find
            # out more about how these arguments are parsed and used
            # in the base entrypoint `run()` method.
            container_op = dsl.ContainerOp(
                name=step.config.name,
                image=image_name,
                command=command,
                arguments=arguments,
                output_artifact_paths={
                    "mlpipeline-ui-metadata": metadata_ui_path,
                },
            )

            settings = cast(
                KubeflowOrchestratorSettings, self.get_settings(step)
            )
            self._configure_container_op(
                container_op=container_op,
                settings=settings,
            )

            if self.requires_resources_in_orchestration_environment(step):
                self._configure_container_resources(
                    container_op=container_op,
                    resource_settings=step.config.resource_settings,
                )

            # Find the upstream container ops of the current step and
            # configure the current container op to run after them
            for upstream_step_name in step.spec.upstream_steps:
                upstream_container_op = step_name_to_container_op[
                    upstream_step_name
                ]
                container_op.after(upstream_container_op)

            # Update dictionary of container ops with the current one
            step_name_to_container_op[step.config.name] = container_op

    orchestrator_run_name = get_orchestrator_run_name(
        pipeline_name=deployment.pipeline.name
    )

    # Get a filepath to use to save the finished yaml to
    fileio.makedirs(self.pipeline_directory)
    pipeline_file_path = os.path.join(
        self.pipeline_directory, f"{orchestrator_run_name}.yaml"
    )

    # write the argo pipeline yaml
    KFPCompiler()._create_and_write_workflow(
        pipeline_func=_construct_kfp_pipeline,
        pipeline_name=deployment.pipeline.name,
        package_path=pipeline_file_path,
    )
    logger.info(
        "Writing Kubeflow workflow definition to `%s`.", pipeline_file_path
    )

    # using the kfp client uploads the pipeline to kubeflow pipelines and
    # runs it there
    self._upload_and_run_pipeline(
        deployment=deployment,
        pipeline_file_path=pipeline_file_path,
        run_name=orchestrator_run_name,
    )
prepare_pipeline_deployment(self, deployment, stack)

Build a Docker image and push it to the container registry.

Parameters:

Name Type Description Default
deployment PipelineDeployment

The pipeline deployment configuration.

required
stack Stack

The stack on which the pipeline will be deployed.

required
Source code in zenml/integrations/kubeflow/orchestrators/kubeflow_orchestrator.py
def prepare_pipeline_deployment(
    self,
    deployment: "PipelineDeployment",
    stack: "Stack",
) -> None:
    """Build a Docker image and push it to the container registry.

    Args:
        deployment: The pipeline deployment configuration.
        stack: The stack on which the pipeline will be deployed.
    """
    docker_image_builder = PipelineDockerImageBuilder()
    repo_digest = docker_image_builder.build_and_push_docker_image(
        deployment=deployment, stack=stack
    )
    deployment.add_extra(ORCHESTRATOR_DOCKER_IMAGE_KEY, repo_digest)
provision(self)

Provisions a local Kubeflow Pipelines deployment.

Exceptions:

Type Description
ProvisioningError

If the provisioning fails.

Source code in zenml/integrations/kubeflow/orchestrators/kubeflow_orchestrator.py
def provision(self) -> None:
    """Provisions a local Kubeflow Pipelines deployment.

    Raises:
        ProvisioningError: If the provisioning fails.
    """
    if self.config.skip_cluster_provisioning:
        return

    if self.is_running:
        logger.info(
            "Found already existing local Kubeflow Pipelines deployment. "
            "If there are any issues with the existing deployment, please "
            "run 'zenml stack down --force' to delete it."
        )
        return

    if not local_deployment_utils.check_prerequisites():
        raise ProvisioningError(
            "Unable to provision local Kubeflow Pipelines deployment: "
            "Please install 'k3d' and 'kubectl' and try again."
        )

    container_registry = Client().active_stack.container_registry

    # should not happen, because the stack validation takes care of this,
    # but just in case
    assert container_registry is not None

    fileio.makedirs(self.root_directory)

    if not self.is_local:
        # don't provision any resources if using a remote KFP installation
        return

    logger.info("Provisioning local Kubeflow Pipelines deployment...")

    container_registry_port = int(
        container_registry.config.uri.split(":")[-1]
    )
    container_registry_name = self._get_k3d_registry_name(
        port=container_registry_port
    )
    local_deployment_utils.write_local_registry_yaml(
        yaml_path=self._k3d_registry_config_path,
        registry_name=container_registry_name,
        registry_uri=container_registry.config.uri,
    )

    try:
        local_deployment_utils.create_k3d_cluster(
            cluster_name=self._k3d_cluster_name,
            registry_name=container_registry_name,
            registry_config_path=self._k3d_registry_config_path,
        )
        kubernetes_context = self.kubernetes_context

        # will never happen, but mypy doesn't know that
        assert kubernetes_context is not None

        local_deployment_utils.deploy_kubeflow_pipelines(
            kubernetes_context=kubernetes_context
        )

        artifact_store = Client().active_stack.artifact_store
        if isinstance(artifact_store, LocalArtifactStore):
            local_deployment_utils.add_hostpath_to_kubeflow_pipelines(
                kubernetes_context=kubernetes_context,
                local_path=artifact_store.path,
            )
    except Exception as e:
        logger.error(e)
        logger.error(
            "Unable to spin up local Kubeflow Pipelines deployment."
        )

        self.list_manual_setup_steps(
            container_registry_name, self._k3d_registry_config_path
        )
        self.deprovision()
resume(self)

Resumes the local k3d cluster.

Exceptions:

Type Description
ProvisioningError

If the k3d cluster is not provisioned.

Source code in zenml/integrations/kubeflow/orchestrators/kubeflow_orchestrator.py
def resume(self) -> None:
    """Resumes the local k3d cluster.

    Raises:
        ProvisioningError: If the k3d cluster is not provisioned.
    """
    if self.is_running:
        logger.info("Local kubeflow pipelines deployment already running.")
        return

    if not self.is_provisioned:
        raise ProvisioningError(
            "Unable to resume local kubeflow pipelines deployment: No "
            "resources provisioned for local deployment."
        )

    kubernetes_context = self.kubernetes_context

    # will never happen, but mypy doesn't know that
    assert kubernetes_context is not None

    if (
        not self.config.skip_cluster_provisioning
        and self.is_local
        and not self.is_cluster_running
    ):
        # don't resume any resources if using a remote KFP installation
        local_deployment_utils.start_k3d_cluster(
            cluster_name=self._k3d_cluster_name
        )

        local_deployment_utils.wait_until_kubeflow_pipelines_ready(
            kubernetes_context=kubernetes_context
        )

    if not self.is_daemon_running:
        local_deployment_utils.start_kfp_ui_daemon(
            pid_file_path=self._pid_file_path,
            log_file_path=self.log_file,
            port=self._get_kfp_ui_daemon_port(),
            kubernetes_context=kubernetes_context,
        )
suspend(self)

Suspends the local k3d cluster.

Source code in zenml/integrations/kubeflow/orchestrators/kubeflow_orchestrator.py
def suspend(self) -> None:
    """Suspends the local k3d cluster."""
    if not self.is_provisioned:
        logger.info("Local kubeflow pipelines deployment not provisioned.")
        return

    if (
        not self.config.skip_ui_daemon_provisioning
        and self.is_daemon_running
    ):
        local_deployment_utils.stop_kfp_ui_daemon(
            pid_file_path=self._pid_file_path
        )

    if (
        not self.config.skip_cluster_provisioning
        and self.is_local
        and self.is_cluster_running
    ):
        # don't suspend any resources if using a remote KFP installation
        local_deployment_utils.stop_k3d_cluster(
            cluster_name=self._k3d_cluster_name
        )

local_deployment_utils

Utils for the local Kubeflow deployment behaviors.

add_hostpath_to_kubeflow_pipelines(kubernetes_context, local_path)

Patches the Kubeflow Pipelines deployment to mount a local folder.

This folder serves as a hostpath for visualization purposes.

This function reconfigures the Kubeflow pipelines deployment to use a shared local folder to support loading the TensorBoard viewer and other pipeline visualization results from a local artifact store, as described here:

https://github.com/kubeflow/pipelines/blob/master/docs/config/volume-support.md

Parameters:

Name Type Description Default
kubernetes_context str

The kubernetes context on which Kubeflow Pipelines should be patched.

required
local_path str

The path to the local folder to mount as a hostpath.

required
Source code in zenml/integrations/kubeflow/orchestrators/local_deployment_utils.py
def add_hostpath_to_kubeflow_pipelines(
    kubernetes_context: str, local_path: str
) -> None:
    """Patches the Kubeflow Pipelines deployment to mount a local folder.

    This folder serves as a hostpath for visualization purposes.

    This function reconfigures the Kubeflow pipelines deployment to use a
    shared local folder to support loading the TensorBoard viewer and other
    pipeline visualization results from a local artifact store, as described
    here:

    https://github.com/kubeflow/pipelines/blob/master/docs/config/volume-support.md

    Args:
        kubernetes_context: The kubernetes context on which Kubeflow Pipelines
            should be patched.
        local_path: The path to the local folder to mount as a hostpath.
    """
    logger.info("Patching Kubeflow Pipelines to mount a local folder.")

    pod_template = {
        "spec": {
            "serviceAccountName": "kubeflow-pipelines-viewer",
            "containers": [
                {
                    "volumeMounts": [
                        {
                            "mountPath": local_path,
                            "name": "local-artifact-store",
                        }
                    ]
                }
            ],
            "volumes": [
                {
                    "hostPath": {
                        "path": local_path,
                        "type": "Directory",
                    },
                    "name": "local-artifact-store",
                }
            ],
        }
    }
    pod_template_json = json.dumps(pod_template, indent=2)
    config_map_data = {"data": {"viewer-pod-template.json": pod_template_json}}
    config_map_data_json = json.dumps(config_map_data, indent=2)

    logger.debug(
        "Adding host path volume for local path `%s` to kubeflow pipeline"
        "viewer pod template configuration.",
        local_path,
    )
    subprocess.check_call(
        [
            "kubectl",
            "--context",
            kubernetes_context,
            "-n",
            "kubeflow",
            "patch",
            "configmap/ml-pipeline-ui-configmap",
            "--type",
            "merge",
            "-p",
            config_map_data_json,
        ]
    )

    deployment_patch = {
        "spec": {
            "template": {
                "spec": {
                    "containers": [
                        {
                            "name": "ml-pipeline-ui",
                            "volumeMounts": [
                                {
                                    "mountPath": local_path,
                                    "name": "local-artifact-store",
                                }
                            ],
                        }
                    ],
                    "volumes": [
                        {
                            "hostPath": {
                                "path": local_path,
                                "type": "Directory",
                            },
                            "name": "local-artifact-store",
                        }
                    ],
                }
            }
        }
    }
    deployment_patch_json = json.dumps(deployment_patch, indent=2)

    logger.debug(
        "Adding host path volume for local path `%s` to the kubeflow UI",
        local_path,
    )
    subprocess.check_call(
        [
            "kubectl",
            "--context",
            kubernetes_context,
            "-n",
            "kubeflow",
            "patch",
            "deployment/ml-pipeline-ui",
            "--type",
            "strategic",
            "-p",
            deployment_patch_json,
        ]
    )
    wait_until_kubeflow_pipelines_ready(kubernetes_context=kubernetes_context)

    logger.info("Finished patching Kubeflow Pipelines setup.")
check_prerequisites(skip_k3d=False, skip_kubectl=False)

Checks prerequisites for a local kubeflow pipelines deployment.

It makes sure they are installed.

Parameters:

Name Type Description Default
skip_k3d bool

Whether to skip the check for the k3d command.

False
skip_kubectl bool

Whether to skip the check for the kubectl command.

False

Returns:

Type Description
bool

Whether all prerequisites are installed.

Source code in zenml/integrations/kubeflow/orchestrators/local_deployment_utils.py
def check_prerequisites(
    skip_k3d: bool = False, skip_kubectl: bool = False
) -> bool:
    """Checks prerequisites for a local kubeflow pipelines deployment.

    It makes sure they are installed.

    Args:
        skip_k3d: Whether to skip the check for the k3d command.
        skip_kubectl: Whether to skip the check for the kubectl command.

    Returns:
        Whether all prerequisites are installed.
    """
    k3d_installed = skip_k3d or shutil.which("k3d") is not None
    kubectl_installed = skip_kubectl or shutil.which("kubectl") is not None
    logger.debug(
        "Local kubeflow deployment prerequisites: K3D - %s, Kubectl - %s",
        k3d_installed,
        kubectl_installed,
    )
    return k3d_installed and kubectl_installed
create_k3d_cluster(cluster_name, registry_name, registry_config_path)

Creates a K3D cluster.

Parameters:

Name Type Description Default
cluster_name str

Name of the cluster to create.

required
registry_name str

Name of the registry to create for this cluster.

required
registry_config_path str

Path to the registry config file.

required
Source code in zenml/integrations/kubeflow/orchestrators/local_deployment_utils.py
def create_k3d_cluster(
    cluster_name: str, registry_name: str, registry_config_path: str
) -> None:
    """Creates a K3D cluster.

    Args:
        cluster_name: Name of the cluster to create.
        registry_name: Name of the registry to create for this cluster.
        registry_config_path: Path to the registry config file.
    """
    logger.info("Creating local K3D cluster '%s'.", cluster_name)
    local_stores_path = GlobalConfiguration().local_stores_path
    subprocess.check_call(
        [
            "k3d",
            "cluster",
            "create",
            cluster_name,
            "--image",
            K3S_IMAGE_NAME,
            "--registry-create",
            registry_name,
            "--registry-config",
            registry_config_path,
            "--volume",
            f"{local_stores_path}:{local_stores_path}",
        ]
    )
    logger.info("Finished K3D cluster creation.")
delete_k3d_cluster(cluster_name)

Deletes a K3D cluster with the given name.

Parameters:

Name Type Description Default
cluster_name str

Name of the cluster to delete.

required
Source code in zenml/integrations/kubeflow/orchestrators/local_deployment_utils.py
def delete_k3d_cluster(cluster_name: str) -> None:
    """Deletes a K3D cluster with the given name.

    Args:
        cluster_name: Name of the cluster to delete.
    """
    subprocess.check_call(["k3d", "cluster", "delete", cluster_name])
    logger.info("Deleted local k3d cluster '%s'.", cluster_name)
deploy_kubeflow_pipelines(kubernetes_context)

Deploys Kubeflow Pipelines.

Parameters:

Name Type Description Default
kubernetes_context str

The kubernetes context on which Kubeflow Pipelines should be deployed.

required
Source code in zenml/integrations/kubeflow/orchestrators/local_deployment_utils.py
def deploy_kubeflow_pipelines(kubernetes_context: str) -> None:
    """Deploys Kubeflow Pipelines.

    Args:
        kubernetes_context: The kubernetes context on which Kubeflow Pipelines
            should be deployed.
    """
    logger.info("Deploying Kubeflow Pipelines.")
    subprocess.check_call(
        [
            "kubectl",
            "--context",
            kubernetes_context,
            "apply",
            "-k",
            f"github.com/kubeflow/pipelines/manifests/kustomize/cluster-scoped-resources?ref={KFP_VERSION}&timeout=5m",
        ]
    )
    subprocess.check_call(
        [
            "kubectl",
            "--context",
            kubernetes_context,
            "wait",
            "--timeout=60s",
            "--for",
            "condition=established",
            "crd/applications.app.k8s.io",
        ]
    )
    subprocess.check_call(
        [
            "kubectl",
            "--context",
            kubernetes_context,
            "apply",
            "-k",
            f"github.com/kubeflow/pipelines/manifests/kustomize/env/platform-agnostic-pns?ref={KFP_VERSION}&timeout=5m",
        ]
    )

    wait_until_kubeflow_pipelines_ready(kubernetes_context=kubernetes_context)
    logger.info("Finished Kubeflow Pipelines setup.")
k3d_cluster_exists(cluster_name)

Checks whether there exists a K3D cluster with the given name.

Parameters:

Name Type Description Default
cluster_name str

Name of the cluster to check.

required

Returns:

Type Description
bool

Whether the cluster exists.

Source code in zenml/integrations/kubeflow/orchestrators/local_deployment_utils.py
def k3d_cluster_exists(cluster_name: str) -> bool:
    """Checks whether there exists a K3D cluster with the given name.

    Args:
        cluster_name: Name of the cluster to check.

    Returns:
        Whether the cluster exists.
    """
    output = subprocess.check_output(
        ["k3d", "cluster", "list", "--output", "json"]
    )
    clusters = json.loads(output)
    for cluster in clusters:
        if cluster["name"] == cluster_name:
            return True
    return False
k3d_cluster_running(cluster_name)

Checks whether the K3D cluster with the given name is running.

Parameters:

Name Type Description Default
cluster_name str

Name of the cluster to check.

required

Returns:

Type Description
bool

Whether the cluster is running.

Source code in zenml/integrations/kubeflow/orchestrators/local_deployment_utils.py
def k3d_cluster_running(cluster_name: str) -> bool:
    """Checks whether the K3D cluster with the given name is running.

    Args:
        cluster_name: Name of the cluster to check.

    Returns:
        Whether the cluster is running.
    """
    output = subprocess.check_output(
        ["k3d", "cluster", "list", "--output", "json"]
    )
    clusters = json.loads(output)
    for cluster in clusters:
        if cluster["name"] == cluster_name:
            server_count: int = cluster["serversCount"]
            servers_running: int = cluster["serversRunning"]
            return servers_running == server_count
    return False
kubeflow_pipelines_ready(kubernetes_context)

Returns whether all Kubeflow Pipelines pods are ready.

Parameters:

Name Type Description Default
kubernetes_context str

The kubernetes context in which the pods should be checked.

required

Returns:

Type Description
bool

Whether all Kubeflow Pipelines pods are ready.

Source code in zenml/integrations/kubeflow/orchestrators/local_deployment_utils.py
def kubeflow_pipelines_ready(kubernetes_context: str) -> bool:
    """Returns whether all Kubeflow Pipelines pods are ready.

    Args:
        kubernetes_context: The kubernetes context in which the pods
            should be checked.

    Returns:
        Whether all Kubeflow Pipelines pods are ready.
    """
    try:
        subprocess.check_call(
            [
                "kubectl",
                "--context",
                kubernetes_context,
                "--namespace",
                "kubeflow",
                "wait",
                "--for",
                "condition=ready",
                "--timeout=0s",
                "pods",
                "-l",
                "application-crd-id=kubeflow-pipelines",
            ],
            stdout=subprocess.DEVNULL,
            stderr=subprocess.DEVNULL,
        )
        return True
    except subprocess.CalledProcessError:
        return False
start_k3d_cluster(cluster_name)

Starts a K3D cluster with the given name.

Parameters:

Name Type Description Default
cluster_name str

Name of the cluster to start.

required
Source code in zenml/integrations/kubeflow/orchestrators/local_deployment_utils.py
def start_k3d_cluster(cluster_name: str) -> None:
    """Starts a K3D cluster with the given name.

    Args:
        cluster_name: Name of the cluster to start.
    """
    subprocess.check_call(["k3d", "cluster", "start", cluster_name])
    logger.info("Started local k3d cluster '%s'.", cluster_name)
start_kfp_ui_daemon(pid_file_path, log_file_path, port, kubernetes_context)

Starts a daemon process that forwards ports.

This is so the Kubeflow Pipelines UI is accessible in the browser.

Parameters:

Name Type Description Default
pid_file_path str

Path where the file with the daemons process ID should be written.

required
log_file_path str

Path to a file where the daemon logs should be written.

required
port int

Port on which the UI should be accessible.

required
kubernetes_context str

The kubernetes context for the cluster where Kubeflow Pipelines is running.

required
Source code in zenml/integrations/kubeflow/orchestrators/local_deployment_utils.py
def start_kfp_ui_daemon(
    pid_file_path: str,
    log_file_path: str,
    port: int,
    kubernetes_context: str,
) -> None:
    """Starts a daemon process that forwards ports.

    This is so the Kubeflow Pipelines UI is accessible in the browser.

    Args:
        pid_file_path: Path where the file with the daemons process ID should
            be written.
        log_file_path: Path to a file where the daemon logs should be written.
        port: Port on which the UI should be accessible.
        kubernetes_context: The kubernetes context for the cluster where
            Kubeflow Pipelines is running.
    """
    command = [
        "kubectl",
        "--context",
        kubernetes_context,
        "--namespace",
        "kubeflow",
        "port-forward",
        "svc/ml-pipeline-ui",
        f"{port}:80",
    ]

    if not networking_utils.port_available(port):
        modified_command = command.copy()
        modified_command[-1] = "PORT:80"
        logger.warning(
            "Unable to port-forward Kubeflow Pipelines UI to local port %d "
            "because the port is occupied. In order to access the Kubeflow "
            "Pipelines UI at http://localhost:PORT/, please run '%s' in a "
            "separate command line shell (replace PORT with a free port of "
            "your choice).",
            port,
            " ".join(modified_command),
        )
    elif sys.platform == "win32":
        logger.warning(
            "Daemon functionality not supported on Windows. "
            "In order to access the Kubeflow Pipelines UI at "
            "http://localhost:%d/, please run '%s' in a separate command "
            "line shell.",
            port,
            " ".join(command),
        )
    else:
        from zenml.utils import daemon

        def _daemon_function() -> None:
            """Port-forwards the Kubeflow Pipelines UI pod."""
            subprocess.check_call(command)

        daemon.run_as_daemon(
            _daemon_function, pid_file=pid_file_path, log_file=log_file_path
        )
        logger.info(
            "Started Kubeflow Pipelines UI daemon (check the daemon logs at %s "
            "in case you're not able to view the UI). The Kubeflow Pipelines "
            "UI should now be accessible at http://localhost:%d/.",
            log_file_path,
            port,
        )
stop_k3d_cluster(cluster_name)

Stops a K3D cluster with the given name.

Parameters:

Name Type Description Default
cluster_name str

Name of the cluster to stop.

required
Source code in zenml/integrations/kubeflow/orchestrators/local_deployment_utils.py
def stop_k3d_cluster(cluster_name: str) -> None:
    """Stops a K3D cluster with the given name.

    Args:
        cluster_name: Name of the cluster to stop.
    """
    subprocess.check_call(["k3d", "cluster", "stop", cluster_name])
    logger.info("Stopped local k3d cluster '%s'.", cluster_name)
stop_kfp_ui_daemon(pid_file_path)

Stops the KFP UI daemon process if it is running.

Parameters:

Name Type Description Default
pid_file_path str

Path to the file with the daemons process ID.

required
Source code in zenml/integrations/kubeflow/orchestrators/local_deployment_utils.py
def stop_kfp_ui_daemon(pid_file_path: str) -> None:
    """Stops the KFP UI daemon process if it is running.

    Args:
        pid_file_path: Path to the file with the daemons process ID.
    """
    if fileio.exists(pid_file_path):
        if sys.platform == "win32":
            # Daemon functionality is not supported on Windows, so the PID
            # file won't exist. This if clause exists just for mypy to not
            # complain about missing functions
            pass
        else:
            from zenml.utils import daemon

            daemon.stop_daemon(pid_file_path)
            fileio.remove(pid_file_path)
            logger.info("Stopped Kubeflow Pipelines UI daemon.")
wait_until_kubeflow_pipelines_ready(kubernetes_context)

Waits until all Kubeflow Pipelines pods are ready.

Parameters:

Name Type Description Default
kubernetes_context str

The kubernetes context in which the pods should be checked.

required
Source code in zenml/integrations/kubeflow/orchestrators/local_deployment_utils.py
def wait_until_kubeflow_pipelines_ready(kubernetes_context: str) -> None:
    """Waits until all Kubeflow Pipelines pods are ready.

    Args:
        kubernetes_context: The kubernetes context in which the pods
            should be checked.
    """
    logger.info(
        "Waiting for all Kubeflow Pipelines pods to be ready (this might "
        "take a few minutes)."
    )
    while True:
        logger.info("Current pod status:")
        subprocess.check_call(
            [
                "kubectl",
                "--context",
                kubernetes_context,
                "--namespace",
                "kubeflow",
                "get",
                "pods",
            ]
        )
        if kubeflow_pipelines_ready(kubernetes_context=kubernetes_context):
            break

        logger.info("One or more pods not ready yet, waiting for 30 seconds...")
        time.sleep(30)
write_local_registry_yaml(yaml_path, registry_name, registry_uri)

Writes a K3D registry config file.

Parameters:

Name Type Description Default
yaml_path str

Path where the config file should be written to.

required
registry_name str

Name of the registry.

required
registry_uri str

URI of the registry.

required
Source code in zenml/integrations/kubeflow/orchestrators/local_deployment_utils.py
def write_local_registry_yaml(
    yaml_path: str, registry_name: str, registry_uri: str
) -> None:
    """Writes a K3D registry config file.

    Args:
        yaml_path: Path where the config file should be written to.
        registry_name: Name of the registry.
        registry_uri: URI of the registry.
    """
    yaml_content = {
        "mirrors": {registry_uri: {"endpoint": [f"http://{registry_name}"]}}
    }
    yaml_utils.write_yaml(yaml_path, yaml_content)

utils

Utils for ZenML Kubeflow orchestrators implementation.

dump_ui_metadata(execution_info, metadata_ui_path)

Dump KFP UI metadata json file for visualization purpose.

For general components we just render a simple Markdown file for exec_properties/inputs/outputs.

Parameters:

Name Type Description Default
execution_info ExecutionInfo

runtime execution info for this component, including materialized inputs/outputs/execution properties and id.

required
metadata_ui_path str

path to dump ui metadata.

required
Source code in zenml/integrations/kubeflow/orchestrators/utils.py
def dump_ui_metadata(
    execution_info: data_types.ExecutionInfo,
    metadata_ui_path: str,
) -> None:
    """Dump KFP UI metadata json file for visualization purpose.

    For general components we just render a simple Markdown file for
        exec_properties/inputs/outputs.

    Args:
        execution_info: runtime execution info for this component, including
            materialized inputs/outputs/execution properties and id.
        metadata_ui_path: path to dump ui metadata.
    """
    node = execution_info.pipeline_node
    if not node:
        return

    exec_properties_list = [
        "**{}**: {}".format(
            _sanitize_underscore(name), _sanitize_underscore(exec_property)
        )
        for name, exec_property in execution_info.exec_properties.items()
    ]
    src_str_exec_properties = "# Execution properties:\n{}".format(
        "\n\n".join(exec_properties_list) or "No execution property."
    )

    def _dump_input_populated_artifacts(
        node_inputs: MutableMapping[str, InputSpec],
        name_to_artifacts: Dict[str, List[artifact.Artifact]],
    ) -> List[str]:
        """Dump artifacts markdown string for inputs.

        Args:
            node_inputs: maps from input name to input sepc proto.
            name_to_artifacts: maps from input key to list of populated    artifacts.

        Returns:
            A list of dumped markdown string, each of which represents a channel.
        """
        rendered_list = []
        for name, spec in node_inputs.items():
            # Need to look for materialized artifacts in the execution decision.
            rendered_artifacts = "".join(
                [
                    _render_artifact_as_mdstr(single_artifact)
                    for single_artifact in name_to_artifacts.get(name, [])
                ]
            )
            # There must be at least a channel in a input, and all channels in
            # a input share the same artifact type.
            artifact_type = spec.channels[0].artifact_query.type.name
            rendered_list.append(
                "## {name}\n\n**Type**: {channel_type}\n\n{artifacts}".format(
                    name=_sanitize_underscore(name),
                    channel_type=_sanitize_underscore(artifact_type),
                    artifacts=rendered_artifacts,
                )
            )

        return rendered_list

    def _dump_output_populated_artifacts(
        node_outputs: MutableMapping[str, OutputSpec],
        name_to_artifacts: Dict[str, List[artifact.Artifact]],
    ) -> List[str]:
        """Dump artifacts markdown string for outputs.

        Args:
            node_outputs: maps from output name to output sepc proto.
            name_to_artifacts: maps from output key to list of populated
                artifacts.

        Returns:
            A list of dumped markdown string, each of which represents a channel.
        """
        rendered_list = []
        for name, spec in node_outputs.items():
            # Need to look for materialized artifacts in the execution decision.
            rendered_artifacts = "".join(
                [
                    _render_artifact_as_mdstr(single_artifact)
                    for single_artifact in name_to_artifacts.get(name, [])
                ]
            )
            # There must be at least a channel in a input, and all channels
            # in a input share the same artifact type.
            artifact_type = spec.artifact_spec.type.name
            rendered_list.append(
                "## {name}\n\n**Type**: {channel_type}\n\n{artifacts}".format(
                    name=_sanitize_underscore(name),
                    channel_type=_sanitize_underscore(artifact_type),
                    artifacts=rendered_artifacts,
                )
            )

        return rendered_list

    src_str_inputs = "# Inputs:\n{}".format(
        "".join(
            _dump_input_populated_artifacts(
                node_inputs=node.inputs.inputs,
                name_to_artifacts=execution_info.input_dict or {},
            )
        )
        or "No input."
    )

    src_str_outputs = "# Outputs:\n{}".format(
        "".join(
            _dump_output_populated_artifacts(
                node_outputs=node.outputs.outputs,
                name_to_artifacts=execution_info.output_dict or {},
            )
        )
        or "No output."
    )

    outputs = [
        {
            "storage": "inline",
            "source": "{exec_properties}\n\n{inputs}\n\n{outputs}".format(
                exec_properties=src_str_exec_properties,
                inputs=src_str_inputs,
                outputs=src_str_outputs,
            ),
            "type": "markdown",
        }
    ]
    # Add TensorBoard view for ModelRun outputs.
    for name, spec in node.outputs.outputs.items():
        if (
            spec.artifact_spec.type.name
            == standard_artifacts.ModelRun.TYPE_NAME
            or spec.artifact_spec.type.name == ModelArtifact.TYPE_NAME
        ):
            output_model = execution_info.output_dict[name][0]
            source = output_model.uri

            # For local artifact repository, use a path that is relative to
            # the point where the local artifact folder is mounted as a volume
            artifact_store = Client().active_stack.artifact_store
            if isinstance(artifact_store, LocalArtifactStore):
                source = os.path.relpath(source, artifact_store.path)
                source = f"volume://local-artifact-store/{source}"
            # Add TensorBoard view.
            tensorboard_output = {
                "type": "tensorboard",
                "source": source,
            }
            outputs.append(tensorboard_output)

    metadata_dict = {"outputs": outputs}

    with open(metadata_ui_path, "w") as f:
        json.dump(metadata_dict, f)
mount_config_map_op(config_map_name)

Mounts all key-value pairs found in the named Kubernetes ConfigMap.

All key-value pairs in the ConfigMap are mounted as environment variables.

Parameters:

Name Type Description Default
config_map_name str

The name of the ConfigMap resource.

required

Returns:

Type Description
Callable[[kfp.dsl._container_op.ContainerOp], NoneType]

An OpFunc for mounting the ConfigMap.

Source code in zenml/integrations/kubeflow/orchestrators/utils.py
def mount_config_map_op(
    config_map_name: str,
) -> Callable[[dsl.ContainerOp], None]:
    """Mounts all key-value pairs found in the named Kubernetes ConfigMap.

    All key-value pairs in the ConfigMap are mounted as environment variables.

    Args:
        config_map_name: The name of the ConfigMap resource.

    Returns:
        An OpFunc for mounting the ConfigMap.
    """

    def mount_config_map(container_op: dsl.ContainerOp) -> None:
        """Mounts all key-value pairs found in the Kubernetes ConfigMap.

        Args:
            container_op: The container op to mount the ConfigMap.
        """
        config_map_ref = k8s_client.V1ConfigMapEnvSource(
            name=config_map_name, optional=True
        )
        container_op.container.add_env_from(
            k8s_client.V1EnvFromSource(config_map_ref=config_map_ref)
        )

    return mount_config_map

utils

KFP utilities.

apply_pod_settings(container_op, settings)

Applies Kubernetes Pod settings to a KFP container.

Parameters:

Name Type Description Default
container_op ContainerOp

The container to which to apply the settings.

required
settings KubernetesPodSettings

The settings to apply.

required
Source code in zenml/integrations/kubeflow/utils.py
def apply_pod_settings(
    container_op: "ContainerOp",
    settings: KubernetesPodSettings,
) -> None:
    """Applies Kubernetes Pod settings to a KFP container.

    Args:
        container_op: The container to which to apply the settings.
        settings: The settings to apply.
    """
    from kubernetes.client.models import V1Affinity, V1Toleration

    for key, value in settings.node_selectors.items():
        container_op.add_node_selector_constraint(label_name=key, value=value)

    if settings.affinity:
        affinity: V1Affinity = serialization_utils.deserialize_kubernetes_model(
            settings.affinity, "V1Affinity"
        )
        container_op.add_affinity(affinity)

    for toleration_dict in settings.tolerations:
        toleration: V1Toleration = (
            serialization_utils.deserialize_kubernetes_model(
                toleration_dict, "V1Toleration"
            )
        )
        container_op.add_toleration(toleration)