Orchestrators
zenml.orchestrators
special
An orchestrator is a special kind of backend that manages the running of each step of the pipeline. Orchestrators administer the actual pipeline runs. You can think of it as the 'root' of any pipeline job that you run during your experimentation.
ZenML supports a local orchestrator out of the box which allows you to run your pipelines in a local environment. We also support using Apache Airflow as the orchestrator to handle the steps of your pipeline.
base_orchestrator
BaseOrchestrator (StackComponent, ABC)
pydantic-model
Base class for all ZenML orchestrators.
Source code in zenml/orchestrators/base_orchestrator.py
class BaseOrchestrator(StackComponent, ABC):
"""Base class for all ZenML orchestrators."""
@property
def type(self) -> StackComponentType:
"""The component type."""
return StackComponentType.ORCHESTRATOR
@property
@abstractmethod
def flavor(self) -> OrchestratorFlavor:
"""The orchestrator flavor."""
@abstractmethod
def run_pipeline(
self,
pipeline: "BasePipeline",
stack: "Stack",
runtime_configuration: "RuntimeConfiguration",
) -> Any:
"""Runs a pipeline.
Args:
pipeline: The pipeline to run.
stack: The stack on which the pipeline is run.
runtime_configuration: Runtime configuration of the pipeline run.
"""
flavor: OrchestratorFlavor
property
readonly
The orchestrator flavor.
type: StackComponentType
property
readonly
The component type.
run_pipeline(self, pipeline, stack, runtime_configuration)
Runs a pipeline.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
pipeline |
BasePipeline |
The pipeline to run. |
required |
stack |
Stack |
The stack on which the pipeline is run. |
required |
runtime_configuration |
RuntimeConfiguration |
Runtime configuration of the pipeline run. |
required |
Source code in zenml/orchestrators/base_orchestrator.py
@abstractmethod
def run_pipeline(
self,
pipeline: "BasePipeline",
stack: "Stack",
runtime_configuration: "RuntimeConfiguration",
) -> Any:
"""Runs a pipeline.
Args:
pipeline: The pipeline to run.
stack: The stack on which the pipeline is run.
runtime_configuration: Runtime configuration of the pipeline run.
"""
context_utils
add_pydantic_object_as_metadata_context(obj, context)
Parameters:
Name | Type | Description | Default |
---|---|---|---|
obj |
BaseModel |
an instance of a pydantic object |
required |
context |
pipeline_pb2.ContextSpec |
a context proto message within a pipeline node |
required |
Source code in zenml/orchestrators/context_utils.py
def add_pydantic_object_as_metadata_context(
obj: "BaseModel",
context: "pipeline_pb2.ContextSpec", # type: ignore[valid-type]
) -> None:
"""
Args:
obj: an instance of a pydantic object
context: a context proto message within a pipeline node
"""
context.type.name = ( # type: ignore[attr-defined]
obj.__repr_name__().lower()
)
# Setting the name of the context
name = str(hash(obj.json(sort_keys=True)))
context.name.field_value.string_value = name # type:ignore[attr-defined]
# Setting the properties of the context
for k, v in obj.dict().items():
c_property = context.properties[k] # type:ignore[attr-defined]
if isinstance(v, int):
c_property.field_value.int_value = v
elif isinstance(v, float):
c_property.field_value.double_value = v
elif isinstance(v, str):
c_property.field_value.string_value = v
else:
c_property.field_value.string_value = str(v)
add_stack_as_metadata_context(stack, context)
Given an instance of a stack object, the function adds it to the context of a pipeline node in proper format
Parameters:
Name | Type | Description | Default |
---|---|---|---|
stack |
Stack |
an instance of a Zenml Stack object |
required |
context |
pipeline_pb2.ContextSpec |
a context proto message within a pipeline node |
required |
Source code in zenml/orchestrators/context_utils.py
def add_stack_as_metadata_context(
stack: "Stack",
context: "pipeline_pb2.ContextSpec", # type: ignore[valid-type]
) -> None:
"""Given an instance of a stack object, the function adds it to the context
of a pipeline node in proper format
Args:
stack: an instance of a Zenml Stack object
context: a context proto message within a pipeline node
"""
# Adding the type of context
context.type.name = ( # type:ignore[attr-defined]
MetadataContextTypes.STACK.value
)
# Converting the stack into a dict to prepare for hashing
stack_dict = stack.dict()
# Setting the name of the context
name = str(hash(json.dumps(stack_dict, sort_keys=True)))
context.name.field_value.string_value = name # type:ignore[attr-defined]
# Setting the properties of the context
for k, v in stack_dict.items():
c_property = context.properties[k] # type:ignore[attr-defined]
c_property.field_value.string_value = v
local
special
local_orchestrator
LocalOrchestrator (BaseOrchestrator)
pydantic-model
Orchestrator responsible for running pipelines locally.
Source code in zenml/orchestrators/local/local_orchestrator.py
class LocalOrchestrator(BaseOrchestrator):
"""Orchestrator responsible for running pipelines locally."""
supports_local_execution = True
supports_remote_execution = False
@property
def flavor(self) -> OrchestratorFlavor:
"""The orchestrator flavor."""
return OrchestratorFlavor.LOCAL
def run_pipeline(
self,
pipeline_proto: "BasePipeline",
stack: "Stack",
runtime_configuration: "RuntimeConfiguration",
) -> Any:
"""Runs a pipeline locally"""
tfx_pipeline = create_tfx_pipeline(pipeline_proto, stack=stack)
if runtime_configuration is None:
runtime_configuration = RuntimeConfiguration()
if runtime_configuration.schedule:
logger.warning(
"Local Orchestrator currently does not support the"
"use of schedules. The `schedule` will be ignored "
"and the pipeline will be run directly"
)
for component in tfx_pipeline.components:
if isinstance(component, base_component.BaseComponent):
component._resolve_pip_dependencies(
tfx_pipeline.pipeline_info.pipeline_root
)
c = compiler.Compiler()
pipeline_proto = c.compile(tfx_pipeline)
# Substitute the runtime parameter to be a concrete run_id
runtime_parameter_utils.substitute_runtime_parameter(
pipeline_proto,
{
PIPELINE_RUN_ID_PARAMETER_NAME: runtime_configuration.run_name,
},
)
deployment_config = runner_utils.extract_local_deployment_config(
pipeline_proto
)
connection_config = (
Repository().active_stack.metadata_store.get_tfx_metadata_config()
)
logger.debug(f"Using deployment config:\n {deployment_config}")
logger.debug(f"Using connection config:\n {connection_config}")
# Run each component. Note that the pipeline.components list is in
# topological order.
for node in pipeline_proto.nodes:
context = node.pipeline_node.contexts.contexts.add()
context_utils.add_stack_as_metadata_context(
context=context, stack=stack
)
# Add all pydantic objects from runtime_configuration to the
# context
for k, v in runtime_configuration.items():
if v and issubclass(type(v), BaseModel):
context = node.pipeline_node.contexts.contexts.add()
logger.debug("Adding %s to context", k)
context_utils.add_pydantic_object_as_metadata_context(
context=context, obj=v
)
pipeline_node = node.pipeline_node
node_id = pipeline_node.node_info.id
executor_spec = runner_utils.extract_executor_spec(
deployment_config, node_id
)
custom_driver_spec = runner_utils.extract_custom_driver_spec(
deployment_config, node_id
)
p_info = pipeline_proto.pipeline_info
r_spec = pipeline_proto.runtime_spec
component_launcher = launcher.Launcher(
pipeline_node=pipeline_node,
mlmd_connection=metadata.Metadata(connection_config),
pipeline_info=p_info,
pipeline_runtime_spec=r_spec,
executor_spec=executor_spec,
custom_driver_spec=custom_driver_spec,
)
execute_step(component_launcher)
flavor: OrchestratorFlavor
property
readonly
The orchestrator flavor.
run_pipeline(self, pipeline_proto, stack, runtime_configuration)
Runs a pipeline locally
Source code in zenml/orchestrators/local/local_orchestrator.py
def run_pipeline(
self,
pipeline_proto: "BasePipeline",
stack: "Stack",
runtime_configuration: "RuntimeConfiguration",
) -> Any:
"""Runs a pipeline locally"""
tfx_pipeline = create_tfx_pipeline(pipeline_proto, stack=stack)
if runtime_configuration is None:
runtime_configuration = RuntimeConfiguration()
if runtime_configuration.schedule:
logger.warning(
"Local Orchestrator currently does not support the"
"use of schedules. The `schedule` will be ignored "
"and the pipeline will be run directly"
)
for component in tfx_pipeline.components:
if isinstance(component, base_component.BaseComponent):
component._resolve_pip_dependencies(
tfx_pipeline.pipeline_info.pipeline_root
)
c = compiler.Compiler()
pipeline_proto = c.compile(tfx_pipeline)
# Substitute the runtime parameter to be a concrete run_id
runtime_parameter_utils.substitute_runtime_parameter(
pipeline_proto,
{
PIPELINE_RUN_ID_PARAMETER_NAME: runtime_configuration.run_name,
},
)
deployment_config = runner_utils.extract_local_deployment_config(
pipeline_proto
)
connection_config = (
Repository().active_stack.metadata_store.get_tfx_metadata_config()
)
logger.debug(f"Using deployment config:\n {deployment_config}")
logger.debug(f"Using connection config:\n {connection_config}")
# Run each component. Note that the pipeline.components list is in
# topological order.
for node in pipeline_proto.nodes:
context = node.pipeline_node.contexts.contexts.add()
context_utils.add_stack_as_metadata_context(
context=context, stack=stack
)
# Add all pydantic objects from runtime_configuration to the
# context
for k, v in runtime_configuration.items():
if v and issubclass(type(v), BaseModel):
context = node.pipeline_node.contexts.contexts.add()
logger.debug("Adding %s to context", k)
context_utils.add_pydantic_object_as_metadata_context(
context=context, obj=v
)
pipeline_node = node.pipeline_node
node_id = pipeline_node.node_info.id
executor_spec = runner_utils.extract_executor_spec(
deployment_config, node_id
)
custom_driver_spec = runner_utils.extract_custom_driver_spec(
deployment_config, node_id
)
p_info = pipeline_proto.pipeline_info
r_spec = pipeline_proto.runtime_spec
component_launcher = launcher.Launcher(
pipeline_node=pipeline_node,
mlmd_connection=metadata.Metadata(connection_config),
pipeline_info=p_info,
pipeline_runtime_spec=r_spec,
executor_spec=executor_spec,
custom_driver_spec=custom_driver_spec,
)
execute_step(component_launcher)
utils
create_tfx_pipeline(zenml_pipeline, stack)
Creates a tfx pipeline from a ZenML pipeline.
Source code in zenml/orchestrators/utils.py
def create_tfx_pipeline(
zenml_pipeline: "BasePipeline", stack: "Stack"
) -> tfx_pipeline.Pipeline:
"""Creates a tfx pipeline from a ZenML pipeline."""
# Connect the inputs/outputs of all steps in the pipeline
zenml_pipeline.connect(**zenml_pipeline.steps)
tfx_components = [step.component for step in zenml_pipeline.steps.values()]
artifact_store = stack.artifact_store
metadata_store = stack.metadata_store
return tfx_pipeline.Pipeline(
pipeline_name=zenml_pipeline.name,
components=tfx_components, # type: ignore[arg-type]
pipeline_root=artifact_store.path,
metadata_connection_config=metadata_store.get_tfx_metadata_config(),
enable_cache=zenml_pipeline.enable_cache,
)
execute_step(tfx_launcher)
Executes a tfx component.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
tfx_launcher |
Launcher |
A tfx launcher to execute the component. |
required |
Returns:
Type | Description |
---|---|
Optional[tfx.orchestration.portable.data_types.ExecutionInfo] |
Optional execution info returned by the launcher. |
Source code in zenml/orchestrators/utils.py
def execute_step(
tfx_launcher: launcher.Launcher,
) -> Optional[data_types.ExecutionInfo]:
"""Executes a tfx component.
Args:
tfx_launcher: A tfx launcher to execute the component.
Returns:
Optional execution info returned by the launcher.
"""
step_name = tfx_launcher._pipeline_node.node_info.id # type: ignore[attr-defined] # noqa
start_time = time.time()
logger.info(f"Step `{step_name}` has started.")
try:
execution_info = tfx_launcher.launch()
except RuntimeError as e:
if "execution has already succeeded" in str(e):
# Hacky workaround to catch the error that a pipeline run with
# this name already exists. Raise an error with a more descriptive
# message instead.
raise DuplicateRunNameError()
else:
raise
run_duration = time.time() - start_time
logger.info(
"Step `%s` has finished in %s.",
step_name,
string_utils.get_human_readable_time(run_duration),
)
return execution_info